13.已知雙曲線x2-3y2=-1的兩條漸近線的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

分析 求出雙曲線的漸近線,結合直線的斜率求出直線的傾斜角即可得到結論.

解答 解:雙曲線的標準方程為$\frac{{y}^{2}}{\frac{1}{3}}$-x2=1,
則漸近線方程為y=±$\frac{\sqrt{3}}{3}$x,
由y=$\frac{\sqrt{3}}{3}$x得漸近線的斜率k=$\frac{\sqrt{3}}{3}$=tanθ,則θ=$\frac{π}{6}$,
則兩條漸近線的夾角為2θ=2×$\frac{π}{6}$=$\frac{π}{3}$,
故選:C

點評 本題主要考查雙曲線漸近線的夾角問題,求出雙曲線的漸近線是解決本題的關鍵.比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.5名男生、2名女生站成一排照像:
(1)兩名女生都不站在兩端,有多少不同的站法?
(2)兩名女生要相鄰,有多少種不同的站法?
(3)兩名女生不相鄰,有多少種不同的站法?
(4)女生甲不在左端,女生乙不在右端.有多少不同的站法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.某班級6名同學登臺演出,順序有如下要求:同學甲必須排在前兩位.同學乙不能排在第一位,同學丙必須排在最后一位,該班級這六名同學演出順序的編排方案共有(  )
A.54種B.48種C.42種D.36種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某工人生產(chǎn)合格零件的產(chǎn)量逐月增長,前5個月的產(chǎn)量如表所示:
月份x12345
合格零件y(件)50607080100
(1)若從這5組數(shù)據(jù)中抽出兩組,求抽出的2組數(shù)據(jù)恰好是相鄰的兩個月數(shù)據(jù)的概率;
(2)請根據(jù)所給5組數(shù)據(jù),求出y關于x的線性回歸方程$\stackrel{∧}{y}$=b$\stackrel{∧}{x}$+a;并根據(jù)線性回歸方程預測該工人第6個月生產(chǎn)的合格零件的件數(shù).
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),…(xn,yn)其回歸線y=bx+a的斜率和截距的最小二乘估計分別為:$b=\frac{{\sum_{i=1}^n{{X_i}{Y_i}}-n\overline{x•}\overline y}}{{\sum_{i=1}^n{X_i^2}-n{{\overline x}^2}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個包內裝有4本不同的科技書,另一個包內裝有5本不同的科技書,從兩個包內任取一本的取法有( 。┓N.
A.15B.4C.9D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.兩個隨機變量x,y的取值表為
x0134
y2.24.34.86.7
若x,y具有線性相關關系,且$\stackrel{∧}{y}$=$\stackrel{∧}$x+2.6,則下列四個結論錯誤的是( 。
A.x與y是正相關
B.當x=6時,y的估計值為8.3
C.x每增加一個單位,y增加0.95個單位
D.樣本點(3,4.8)的殘差為0.56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若雙曲線x2-$\frac{y^2}{b^2}$=1的一個焦點到其漸近線的距離為2$\sqrt{2}$,則該雙曲線的焦距等于6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.一個袋子中有形狀大小完全相同的3個黑球和4個白球.
(1)從中任意摸出一球,用0表示摸出黑球,用1表示摸出白球,即X=$\left\{\begin{array}{l}{0,摸出黑球}\\{1,摸出白球}\end{array}\right.$,求X的分布列.
(2)從中任意摸出兩個球,用“ξ=0”表示兩個球全是黑球,用“ξ=1”兩個球不全是黑球,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.有4位同學和3位老師站成一排拍照,任意兩位老師不站在一起的不同排法種數(shù)為1440種.

查看答案和解析>>

同步練習冊答案