3.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,200),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.
(1)求月平均用電量的眾數(shù)和中位數(shù);
(2)在月平均用電量為[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[240,260)的用戶中應抽取多少戶?

分析 (1)根據(jù)累積頻率為1,求出x,進而可得月平均用電量的眾數(shù)和中位數(shù);
(2)根據(jù)分層抽樣的等比例性質(zhì),計算出抽樣比,可得答案.

解答 解:(1)①由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方圖中x的值是0.0075.…(2分)
②月平均用電量的眾數(shù)是$\frac{220+240}{2}=230$.…(4分)
③因為(0.002+0.0095+0.011)×20=0.45<0.5,
所以月平均用電量的中位數(shù)在[220,240)內(nèi),
設中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220=0.5)得a=224.
所以月平均用電量的中位數(shù)是224.…(5分)
(2)月平均用電量為[220,240)的用戶有0.0125×20×100=25戶,
月平均用電量為[240,260)的用戶有0.0075×20×100=15戶,
月平均用電量為[260,280)的用戶有0.005×20×100=10戶,
月平均用電量為[280,300)的用戶有0.0025×20×100=5戶,…(8分)
抽取比例:$\frac{11}{25+15+10+5}=\frac{1}{5}$,…(9分)
所以月平均用電量在[240,260)的用戶應抽取$15×\frac{1}{5}=3$戶.…(10分)

點評 本題考查的知識是頻率分布直方圖,分層抽樣,是統(tǒng)計的綜合應用,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.去年某地的月平均氣溫y(℃)與月份x(月)近似地滿足函數(shù)y=a+bsin($\frac{π}{6}$x+$\frac{π}{6}$)(a,b為常數(shù)).若6月份的月平均氣溫約為22℃,12月份的月平均氣溫約為4℃,則該地8月份的月平均氣溫約為31℃.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}3-{x^2},x∈[-1,2]\\ x-3,x∈(2,5].\end{array}$
(1)在圖1給定的直角坐標系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)區(qū)間,并指出單調(diào)性;
(3)寫出函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.將函數(shù)f(x)=cos2x的圖象向右平移$\frac{π}{4}$個單位后得到函數(shù)g(x),則g(x)具有性質(zhì)( 。
A.最大值為1,圖象關于直線$x=\frac{π}{2}$對稱B.周期為π,圖象關于點($\frac{3π}{8}$,0)對稱
C.在(-$\frac{3π}{8}$,$\frac{π}{8}$)上單調(diào)遞增,為偶函數(shù)D.在$({0,\frac{π}{4}})$上單調(diào)遞增,為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線$C:\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>b>0)$的一條漸近線與函數(shù)y=1+lnx+ln2的圖象相切,則雙曲線C的離心率是( 。
A.2B.$\sqrt{5}$C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設拋物線y2=2px(x>0)的焦點為F,點A(0,$\sqrt{2}$),線段FA的中點在拋物線上,設動直線l:y=kx+m與拋物線相切于點P,且與拋物線的準線相交于點Q,以PQ為直徑的圓記為圓C.
(1)求p的值;
(2)證明:圓C與x軸必有公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合P={0,a},Q={1,2},若P∩Q=∅,則a等于( 。
A.1B.2C.l或2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若p:a≤2,q:(a-2)≤0,則¬p是¬q的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.方程x2+y2+ax+2ay+$\frac{5}{4}$a2+a-1=0表示圓,則a的取值范圍是(-∞,1).

查看答案和解析>>

同步練習冊答案