15.已知集合P={0,a},Q={1,2},若P∩Q=∅,則a等于(  )
A.1B.2C.l或2D.3

分析 根據(jù)題意P∩Q=∅,說明P、Q兩個(gè)集合中必定沒有公共元素,問題得以解決.

解答 解:∵集合P={0,a},Q={1,2},且P∩Q=∅,
∴a不能等于1,2,
故選:D

點(diǎn)評(píng) 本題考查了集合關(guān)系中參數(shù)的取值問題,屬于基礎(chǔ)題.牢記集合的定義和集合交集非空的含義,是解決好本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex(x2-a),a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)f(x)在(-3,0)上單調(diào)遞減,試求a的取值范圍;
(Ⅲ)若函數(shù)f(x)的最小值為-2e,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+5cosφ}\\{y=\sqrt{3}+5sinφ}\end{array}\right.$(φ為參數(shù)),一坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為2ρcos(θ-$\frac{π}{3}$)=23
(1)把圓C1、C2的方程化為普通方程;
(2)求圓C1上的點(diǎn)到直線C2的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,200),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.
(1)求月平均用電量的眾數(shù)和中位數(shù);
(2)在月平均用電量為[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[240,260)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.$\frac{{sin{{92}°}-sin{{32}°}cos{{60}°}}}{{cos{{32}°}}}$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:函數(shù)f(x)=x2+ax-2在[-2,2]內(nèi)有且僅有一個(gè)零點(diǎn).命題q:x2+ax+2≤0在區(qū)間[1,2]內(nèi)有解.若命題“p且q”是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.為了調(diào)查城市PM2.5的值,按地域把48個(gè)城市分為甲、乙、丙三組,對(duì)應(yīng)的城市數(shù)分別為10,18,20.若用分層抽樣的方法抽取16個(gè)城市,則乙組中應(yīng)抽取的城市數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.己知函數(shù)f(x)=x3+ax2+bx+a2在x=l處有極值10,則f($\sqrt{2}$)+f′($\sqrt{2}$)+$\sqrt{2}$等于(  )
A.. 11B..12C.19D.12或19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(3,4),當(dāng)$\overrightarrow{a}$⊥$\overrightarrow$時(shí),sin2α+sin2α=$-\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案