精英家教網 > 高中數學 > 題目詳情

【題目】鈍角三角形ABC的面積是 ,AB=1,BC= ,則AC=(
A.5
B.
C.2
D.1

【答案】B
【解析】解:∵鈍角三角形ABC的面積是 ,AB=c=1,BC=a= ,
∴S= acsinB= ,即sinB= ,
當B為鈍角時,cosB=﹣ =﹣ ,
利用余弦定理得:AC2=AB2+BC2﹣2ABBCcosB=1+2+2=5,即AC= ,
當B為銳角時,cosB= = ,
利用余弦定理得:AC2=AB2+BC2﹣2ABBCcosB=1+2﹣2=1,即AC=1,
此時AB2+AC2=BC2 , 即△ABC為直角三角形,不合題意,舍去,
則AC=
故選:B.
利用三角形面積公式列出關系式,將已知面積,AB,BC的值代入求出sinB的值,分兩種情況考慮:當B為鈍角時;當B為銳角時,利用同角三角函數間的基本關系求出cosB的值,利用余弦定理求出AC的值即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點P(1,1),過點P動直線l與圓C:x2+y2﹣2y﹣4=0交與點A,B兩點.
(1)若|AB|= ,求直線l的傾斜角;
(2)求線段AB中點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設計一個計算的算法.下面給出了程序的一部分,則在橫線①上不能填入下面的哪一個數(  )

A.13
B.13.5     
C.14
D.14.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一條光線從點A(﹣4,﹣2)射出,到直線y=x上的B點后被直線y=x反射到y(tǒng)軸上的C點,又被y軸反射,這時反射光線恰好過點D(﹣1,6).求BC所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=4
(1)求過點P(3,3)且與圓C相切的直線l的方程;
(2)已知直線m:x﹣y+1=0與圓C交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱中,側棱底面, , , , 且點分別為的中點.

1)求證: 平面;

2求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知tan( +x)=﹣
(1)求tan2x的值;
(2)若x是第二象限的角,化簡三角式 + ,并求值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 ,點P( )在橢圓上.
(1)求橢圓的離心率;
(2)設A為橢圓的左頂點,O為坐標原點.若點Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角△ABC中,內角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

同步練習冊答案