17.函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線$x=\frac{π}{8}$,則φ=-$\frac{3π}{4}$,y=f(x)的單調(diào)增區(qū)間是-$\frac{3π}{4}$,[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z.

分析 根據(jù)題意,利用函數(shù)f(x)圖象的一條對稱軸求出φ的值,再根據(jù)正弦函數(shù)的圖象與性質(zhì)求出y=f(x)的單調(diào)增區(qū)間.

解答 解:∵函數(shù)f(x)=sin(2x+φ)圖象的一條對稱軸是直線$x=\frac{π}{8}$,
∴2×$\frac{π}{8}$+φ=$\frac{π}{2}$+π,k∈Z,
∴φ=$\frac{π}{4}$+kπ,k∈Z;
又-π<φ<0,
∴φ=-$\frac{3π}{4}$,
∴y=f(x)=sin(2x-$\frac{3π}{4}$);
令-$\frac{π}{2}$+2kπ≤2x-$\frac{3π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴$\frac{π}{8}$+kπ≤x≤$\frac{5π}{8}$+kπ,k∈Z,
∴y=f(x)的單調(diào)增區(qū)間為[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z.
故答案為:-$\frac{3π}{4}$,[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=eax(ax-2)(a>0);
(1)求函數(shù)的單調(diào)區(qū)間與極值:
(2)設(shè)g(x)=f($\frac{2}{a}$-x),求證:當x>$\frac{1}{a}$,f(x)>g(x);
(3)若f(x)的圖象與直線L:y=t有兩個不同的交點A,B,AB中點為C(x0,y0);
(i)求t的取值范圍(可直接寫出結(jié)果,不必書寫過程);
(ii)求證:f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,角A、B、C的對邊分別是a、b、c.若$A=\frac{π}{4},B-C=\frac{π}{2},a=\sqrt{2}$,則△ABC的面積為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)$f(x)={log_3}(\frac{1+x}{1-x})$,則$f(\frac{1}{2})$=1,y=f(x)的圖象關(guān)于原點對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖是正三棱錐V-ABC的正視圖、側(cè)視圖和俯視圖,則其側(cè)視圖的面積是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=2cos(3x+$\frac{π}{4}$).求:
(Ⅰ)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)f(x)圖象的對稱軸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}\\ x+2\end{array}\right.\begin{array}{l}(x≥0)\\(x<0)\end{array}$,則f(f(-1))=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)$f(x)=[{2sin({x+\frac{π}{3}})-sinx}]cosx-\sqrt{3}{sin^2}x$.
(1)求f(x)的最小正周期.
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若$f(A)=\frac{{\sqrt{3}}}{2}$,AB邊上的高為1,∠ABC=45°,求a的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知$\overrightarrow{a}$=($\frac{3}{2}$,-cosx),$\overrightarrow$=(sinx,$\frac{\sqrt{3}}{2}$),x∈[0,$\frac{π}{2}$],則函數(shù)f(x)=$\vec a•\vec b$的最大值為$\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案