7.甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
 送餐單數(shù) 38 39 40 41 42
 天數(shù) 20 40 20 10 10
乙公司送餐員送餐單數(shù)頻數(shù)表
 送餐單數(shù) 38 39 40 41 42
 天數(shù) 10 20 20 40 10
(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學期望;
(ii)小明擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

分析 (Ⅰ) 記“抽取的兩天送餐單數(shù)都大于40”為事件M,可得P(M)=$\frac{{∁}_{20}^{2}}{{∁}_{100}^{2}}$.
(Ⅱ)(。┰O(shè)乙公司送餐員送餐單數(shù)為a,可得當a=38時,X=38×5=190,以此類推可得:當a=39時,當a=40時,X的值.當a=41時,X=40×5+1×7,同理可得:當a=42時,X=214.所以X的所有可能取值為190,1195,200,207,214.可得X的分布列及其數(shù)學期望.
(ⅱ)依題意,甲公司送餐員日平均送餐單數(shù)為38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.可得甲公司送餐員日平均工資,與乙數(shù)學期望比較即可得出.

解答 解:(Ⅰ) 記“抽取的兩天送餐單數(shù)都大于40”為事件M,
則P(M)=$\frac{{∁}_{20}^{2}}{{∁}_{100}^{2}}$=$\frac{19}{495}$.
(Ⅱ)(。┰O(shè)乙公司送餐員送餐單數(shù)為a,
則當a=38時,X=38×5=190,
當a=39時,X=39×5=195,
當a=40時,X=40×5=200,
當a=41時,X=40×5+1×7=207,
當a=42時,X=40×5+2×7=214.
所以X的所有可能取值為190,195,200,207,214.故X的分布列為:

X190195200207214
P$\frac{1}{10}$$\frac{1}{5}$$\frac{1}{5}$$\frac{2}{5}$$\frac{1}{10}$
∴E(X)=190×$\frac{1}{10}$+195×$\frac{1}{5}$+200×$\frac{1}{5}$+207×$\frac{2}{5}$+214×$\frac{1}{10}$=202.2.
(ⅱ)依題意,甲公司送餐員日平均送餐單數(shù)為
38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.
所以甲公司送餐員日平均工資為70+4×39.5=228元.
由(ⅰ)得乙公司送餐員日平均工資為202.2元.
因為202.2<228,故推薦小明去甲公司應聘.

點評 本題考查了隨機變量的分布列與數(shù)學期望、古典概率計算公式、組合計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)=lnx,g(x)=-$\frac{m}{2}{x^2}+({m+1})x,m>0$.
(1)記h(x)=f(x)-g(x),討論h(x)的單調(diào)性;
(2)若f(x)<g(x)在(0,m)上恒成立,求m的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,過點P(2,1)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ,已知直線l與曲線C交于A、B兩點.
(1)求曲線C的直角坐標方程;
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|x-3|.
(Ⅰ)畫出函數(shù)f(x)的圖象;
(Ⅱ)若不等式f(x)≥$\frac{|3m+1|-|1-m|}{|m+1|}$對任意實數(shù)m≠-1,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,將繪有函數(shù)f(x)=2sin(ωx+φ)(ω>0,$\frac{π}{2}$<φ<π)的部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為2$\sqrt{3}$,則f(-1)=( 。
A.-2B.2C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若α為銳角,sinα-mcosα=a(m>0),則msinα+cosα=$\sqrt{{m}^{2}+1{-a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知實數(shù)x,y滿足的約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≥3}\end{array}\right.$,則z=4x-2y的最小值是( 。
A.-15B.-4C.6D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=ax+$\frac{1}{a}$(1-x),其中a>0,記f(x)在區(qū)間[0,1]上的最大值為g(a),則函數(shù)g(a)的最小值為( 。
A.$\frac{1}{2}$B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)定義域為R的函數(shù)$f(x)=\left\{{\begin{array}{l}{\frac{4}{{|{x-1}|}}(x≠1)}\\{2(x=1)}\end{array}}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個不同的實數(shù)解x1,x2,x3,則${x_1}^2+{x_2}^2+{x_3}^2$=11.

查看答案和解析>>

同步練習冊答案