【題目】數(shù)列滿足,則數(shù)列的前項的和是__________

【答案】450

【解析】分析:根據(jù)遞推關系求出數(shù)列的前幾項,不難發(fā)現(xiàn)項的變化具有周期性,從而得到數(shù)列的前項的和.

詳解:數(shù)列{an}滿足,

∵a1=34,∴a2==17,a3=3a2+1=3×17+1=52,a4==26,a5==13,a6=3a5+1=40,a7==20,a8==10,a9==5,a10=3a9+1=16,

a11==8,a12==4,a13==2,a14==1,同理可得:a15=4,a16=2,a17=1,…….

可得此數(shù)列從第12項開始為周期數(shù)列,周期為3.

則數(shù)列{an}的前100項的和=(a1+a2+……+a11)+a12+a13+29(a14+a15+a16

=(34+17+52+26+13+40+20+10+5+16+8)+4+2+29×(1+4+2)

=450.

故答案為:450.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓長軸是短軸的倍,且右焦點為.

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)直線交橢圓兩點,若線段中點的橫坐標為,求直線的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的特征三角形;如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比,已知橢圓.

1)若橢圓,判斷相似?如果相似,求出的相似比;如果不相似,請說明理由;

2)寫出與橢圓相似且焦點在軸上,短半軸長為的橢圓的標準方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍;

3)如圖:直線與兩個相似橢圓分別交于點和點,試在橢圓和橢圓上分別作出點和點(非橢圓頂點),使組成以為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過坐標原點的兩條直線與橢圓分別相交于點、和點、,其中直線經(jīng)過的左焦點,直線經(jīng)過的右焦點.當直線不垂直于坐標軸時,的斜率乘積為.

(1)求橢圓的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】矩陣乘法運算的幾何意義為平面上的點在矩陣的作用下變換成點,記,且.

1)若平面上的點在矩陣的作用下變換成點,求點的坐標;

2)若平面上相異的兩點在矩陣的作用下,分別變換為點,求證:若點為線段上的點,則點的作用下的點在線段上;

3)已知的頂點坐標為、、,且在矩陣作用下變換成,記的面積分別為,求的值,并寫出一般情況(三角形形狀一般化且變換矩陣一般化)下的關系(不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該校考生的升學情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結論正確的是  

A. 與2015年相比,2018年一本達線人數(shù)減少

B. 與2015年相比,2018年二本達線人數(shù)增加了

C. 2015年與2018年藝體達線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,圓.

(Ⅰ)是拋物線的焦點,是拋物線上的定點,,求拋物線的方程;

(Ⅱ)在(Ⅰ)的條件下,過點的直線與圓相切,設直線交拋物線,兩點,則在軸上是否存在點使?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,智能手機的更新?lián)Q代極其頻繁和快速,而青少年對新事物的追求更是強烈,為了調查大學生更換手機的時間,現(xiàn)對某大學中的大學生使用一部手機的年限進行了問卷調查,并從參與調查的大學生中抽取了男生、女生各人進行抽樣分析,制成如下的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估計男大學生使用手機年限的中位數(shù)和女大學生使用手機年限的眾數(shù);

2)根據(jù)頻率分布直方圖,求出男大學生和女大學生使用手機年限的平均值,并分析比較男大學生和女大學生哪個群體更換手機的頻率更高.

查看答案和解析>>

同步練習冊答案