4.已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2,a3,a2+2成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\sqrt{1+{a_n}^2}$,且b2=$\frac{5}{3}$,證明:b1+b2+…+bn>$\frac{{{4^n}-{3^n}}}{{{3^{n-1}}}}$.

分析 (1)由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,兩式相減,得到an+2=qan+1(n≥1),即數(shù)列{an}是首項(xiàng)為1,公比為q的等比數(shù)列,求出q即可.
(2)可得q=$\frac{4}{3}$,即$\sqrt{1+{q}^{2(n-1)}}>{q}^{n-1}$,于是b1+b2+…+bn>1+q+q2+…+qn-1=$\frac{{q}^{n}-1}{q-1}$=$\frac{(\frac{4}{3})^{n}-1}{\frac{4}{3}-1}$=$\frac{{4}^{n}-{3}^{n}}{{3}^{n-1}}$.

解答 解:(1)由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,兩式相減,得到an+2=qan+1(n≥1).
又由S2=qS1+1,得到a2=qa1
故an+1=qan對所有n≥1都成立.
所以數(shù)列{an}是首項(xiàng)為1,公比為q的等比數(shù)列,從而${a_n}={q^{n-1}}$.…(3分)
由2a2,a3,a2+2成等差數(shù)列,可得2a3=3a2+2,即2q2=3q+2.
則(2q+1)(q-2)=0.
由已知,q>0,故q=2.…(5分)
所以${a}_{n}={2}^{n-1}$.…(6分)
(2)由(1)知,an=qn-1
bn=$\sqrt{1+{{a}_{n}}^{2}}=\sqrt{1+{q}^{2(n-1)}}$.…(7分)
由$_{2}=\sqrt{1+{q}^{2}}=\frac{5}{3}$,q>0解得q=$\frac{4}{3}$.…(8分)
因?yàn)?+q2(n-1)>q2(n-1)所以$\sqrt{1+{q}^{2(n-1)}}>{q}^{n-1}$         …(10分)
于是b1+b2+…+bn>1+q+q2+…+qn-1=$\frac{{q}^{n}-1}{q-1}$=$\frac{(\frac{4}{3})^{n}-1}{\frac{4}{3}-1}$=$\frac{{4}^{n}-{3}^{n}}{{3}^{n-1}}$
故b1+b2+…+bn>$\frac{{{4^n}-{3^n}}}{{{3^{n-1}}}}$.…(12分)

點(diǎn)評 本題考查了數(shù)列的遞推式,等差數(shù)列的性質(zhì),考查了數(shù)列放縮法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若數(shù)列{an}滿足a2-a1<a3-a2<a4-a3<…<an+1-an,則稱數(shù)列{an}為“差遞增”數(shù)列.若數(shù)列{an}是“差遞增”數(shù)列,且其通項(xiàng)an與其前n項(xiàng)和Sn滿足3Sn=1+λ-2an(n∈N*),則λ的取值范圍是(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an2-2Sn=2-an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{3}{{{a_{2n}}{a_{2n+2}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x2-3x-4<0},B={x||x|≤2},則集合A∩B=( 。
A.(-4,2]B.(-1,2]C.[-2,-1)D.[-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xoy中,角θ滿足$sin\frac{θ}{2}=-\frac{{\sqrt{10}}}{10},cos\frac{θ}{2}=\frac{{3\sqrt{10}}}{10},\overrightarrow{OA}=({12,5})$,設(shè)點(diǎn)B是角θ終邊上的一個動點(diǎn),則$|{\overrightarrow{OA}-\overrightarrow{OB}}|$的最小值為$\frac{56}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={-1,0,1,3,5},集合B={1,2,3,4},則A∩B={1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=lgx+$\frac{3}{2}$x-9在區(qū)間(n,n+1)(n∈Z)上存在零點(diǎn),則n=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.現(xiàn)有10件產(chǎn)品,其中6件一等品,4件二等品,從中隨機(jī)選出3件產(chǎn)品,其中一等品的件數(shù)記為隨機(jī)變量X,則X的數(shù)學(xué)期望E(X)=$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l1:x-2y+3=0和l2:x+2y-9=0的交點(diǎn)為A.
(1)求過點(diǎn)A,且與直線2x+3y-1=0平行的直線方程;
(2)求過點(diǎn)A,且傾斜角為直線l1傾斜角2倍的直線方程.

查看答案和解析>>

同步練習(xí)冊答案