(1)16的四次方根是±2;
(2)集合A={x|y=
x
},B={y|y=2x2-1,x∈R}則A∩B=B;
(3)若|log3a|=|log3b|,且a≠b,a>0,b>0則ab=1;
(4)若函數(shù)f(x+1)是偶函數(shù),則f(x)的圖象關(guān)于直線x=1對稱;
其中正確的序號是______$\end{array}$.
(1)∵(±2)4=16,16的四次方根是±2,正確;
(2)對于集合A={x|y=
x
},要使函數(shù)y=
x
有意義,必須x≥0,因此A={x|x≥0},
對于集合B={y|y=2x2-1,x∈R},∵x2-1≥-1,∴y=2x2-12-1=
1
2
,
∴B={y|y≥
1
2
},于是A∩B={x|x≥0}∩{x|y≥
1
2
}=B,因此正確;
(3)若|log3a|=|log3b|,且a≠b,a>0,b>0,∴l(xiāng)og3a=-log3b,∴ab=1,正確;
(4)若函數(shù)f(x+1)是偶函數(shù),其圖象關(guān)于y軸對稱,把函數(shù)f(x+1)的圖象向右平移1個單位可得函數(shù)
f(x)的圖象,因此f(x)的圖象關(guān)于直線x=1對稱,正確.
綜上可知:(1)(2)(3)(4)都正確.
故答案為:(1)(2)(3)(4).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=a•2|x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
-f(x),x<0
給出下列命題:①F(x)=|f(x)|;②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知下列命題:
①若A、B、C、D是空間任意四點,則有
AB
+
BC
+
CD
+
DA
=
0
;
②|
a
+
b
|=
|a|
+
|b|
a
、
b
共線的充要條件;
③若
a
b
,
c
是空間三向量,則|
a
-
b
|≤|
a
-
c
|+|
c
-
b
|;
④對空間任意點O與不共線的三點A、B、C,若
0P
=x
OA
+y
OB
+z
OC
(其中x、y、z∈R),則P、A、B、C四點共面.
其中不正確的命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個命題中,正確的是( 。
A.“若xy=0,則x=0且y=0”的逆否命題
B.“若ac2>bc2則a>b”的逆命題
C.若“m>2,則不等式x2-2x+m>0的解集為R”
D.“正方形是菱形”的否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題
①“若x+y=0,則x,y互為相反數(shù)”的逆命題;
②“若a>b,則a2>b2”的逆否命題;
③“若x≤-3,則x2+x-6≥0”的否命題.
其中真命題個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)是定于在(0,1)上的函數(shù),且滿足:①對任意x∈(0,1),恒有f(x)>0;②對任意x1,x2∈(0,1),恒有
f(x1)
f(x2)
+
f(1-x1)
f(1-x2)
≤2,則關(guān)于函數(shù)f(x)有:
(1)對任意x∈(0,1),都有f(x)>f(1-x);
(2)對任意x∈(0,1),都有f(x)=f(1-x);
(3)對任意x∈(0,1),恒有f′(x)=0;
(4)當x∈(0,1),函數(shù)y=
f(x)
x
+x為減函數(shù).
上述四個命題中正確的有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列各題:
(1)A=R,B=R+,對應(yīng)法則f:“求絕對值”是A到B的映射.
(2)f(x+1)=x2,則f(x)=(x+1)2
(3)A={x∈N|1≤x≤12},B={28,29,30,31}對應(yīng)法則f:“閏年時,月份對應(yīng)這個月的天數(shù)”是A到B的映射.
(4)A=R,B={-1,0,1},對應(yīng)法則f:“x∈A,若x<0,對應(yīng)于-1;若x=0,對應(yīng)于0;若x>0,對應(yīng)于1”,是A到B的映射.
說法錯誤的是______(把錯誤的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,E,F(xiàn)分別是點A在PB,PC上的射影,給出下列結(jié)論:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正確命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

假設(shè)a1,a2,a3,a4是一個等差數(shù)列,且滿足0<a1<2,a3=4.若bn=2an(n=1,2,3,4).給出以下命題:
①數(shù)列{bn}是等比數(shù)列;
②b2>4;
③b4>32;
④b2b4=256.
其中正確命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案