假設(shè)a1,a2,a3,a4是一個(gè)等差數(shù)列,且滿足0<a1<2,a3=4.若bn=2an(n=1,2,3,4).給出以下命題:
①數(shù)列{bn}是等比數(shù)列;
②b2>4;
③b4>32;
④b2b4=256.
其中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4
根據(jù)題意,得
對于①,∵a1,a2,a3,a4是一個(gè)等差數(shù)列,
設(shè)公差為d,則an=a1+(n-1)d,(n=1,2,3,4);
∴bn=2an=2a1+(n-1)d=2a1•(2dn-1,(n=1,2,3,4),
∴{bn}是首項(xiàng)為2a1,公比為2d的等比數(shù)列.∴命題①正確.
對于②,∵在等差數(shù)列{an}中,0<a1<2,a3=4,
∴a2=
a1+a3
2
=
a1+4
2
>2,∴b2=2a2>4;
∴②正確.
對于③,等差數(shù)列{an}中,0<a1<2,a3=4,∴公差d∈(1,2),
∴a4=a3+d>5,∴b4=2a4>25=32;
∴命題③正確.
對于④,∵b2b4=b32=(2a3)2=(242=256,∴命題④正確.
綜上,以上命題正確的是4個(gè).
故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(1)16的四次方根是±2;
(2)集合A={x|y=
x
},B={y|y=2x2-1,x∈R}則A∩B=B;
(3)若|log3a|=|log3b|,且a≠b,a>0,b>0則ab=1;
(4)若函數(shù)f(x+1)是偶函數(shù),則f(x)的圖象關(guān)于直線x=1對稱;
其中正確的序號是______$\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題中所有正確的命題是:______.
(1)不同的兩個(gè)數(shù)a,b的等差中項(xiàng)A的絕對值必大于它們的等比中項(xiàng)G的絕對值.(等差中項(xiàng)A,等比中項(xiàng)G均存在)
(2)無窮等差數(shù)列中有三項(xiàng)是13,25,41,則2013一定是此數(shù)列中的一項(xiàng).
(3)等比數(shù)列{an}中所有項(xiàng)均為正數(shù),并且公比q≠1,則a2+a6>a3+a5
(4)對任何數(shù)列{an}(n≥3),都存在一個(gè)等差數(shù)列{xn}與一個(gè)等比數(shù)列{yn},使得對任何n∈N*,an=xn+yn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:x1和x2是方程x2-mx-2=0的兩個(gè)實(shí)根,不等式a2-5a-3≥|x1-x2|對任意實(shí)數(shù)m∈[-1,1]恒成立;命題q:不等式ax2+2x-1>0有解,若命題p是真命題,命題q是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間中,已知有下列諸命題:
(1)兩組對邊相等,且它們的夾角也相等的三角形全等(2)對邊相等的四邊形是平行四邊形(3)有三個(gè)角是直角的四邊形是矩形(4)有兩組對應(yīng)角相等的兩個(gè)三角形相似.其中正確的命題是( 。
A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=lnx,有以下4個(gè)命題:
①對任意的x1、x2∈(0,+∞),有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
;
②對任意的x1、x2∈(1,+∞),有f(x1)-f(x2)<x2-x1;
③對任意的x1、x2∈(e,+∞),有x1f(x2)<x2f(x1);
④對任意的0<x1<x2,總有x0∈(x1,x2),使得f(x0)≤
f(x1)-f(x2)
x1-x2
.其中正確的是______(填寫序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有下列命題
①平行于y軸的直線不能用點(diǎn)方向式表示;
②平行于y軸的直線不能用點(diǎn)法向式表示;
③平行于y軸的直線不能用一般式表示;
④平行于y軸的直線不能用點(diǎn)斜式表示;
以上命題中,正確的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題是(   ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題:“,使等式成立”是真命題.
(1)求實(shí)數(shù)的取值集合;
(2)設(shè)不等式的解集為,若的必要條件,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案