給出下列四個條件:①平面α、β都垂直于平面γ;②平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等;③l、m是平面α內(nèi)兩條直線,且l∥β,m∥β;④l、m是兩條異面直線,且l∥α,m∥α,l∥β,m∥β.其中可以判斷平面α與平面β平行的條件有( 。
分析:平面與平面平行的判定定理是,如果一個平面內(nèi)的兩條相交直線與另一個平面平行,則這兩個平面平行,由此一一判斷即可
解答:解:平面α、β都垂直于平面γ,平面α與平面β可能平行,也可能相交,故①錯誤
當(dāng)平面α與平面β相交時,在平面β的兩側(cè)也存在三點(diǎn)到平面β的距離相等,故②錯誤
由面面平行的判定定理可知,只有當(dāng)l、m是平面α內(nèi)兩條相交直線時才可,故③錯誤
排除選項(xiàng)BCD
故選A
點(diǎn)評:本題考查了面面平行的判定定理,空間線面位置關(guān)系,解題時要有空間想象力,會用排除法解選擇題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于向量
a
b
,
e
及實(shí)數(shù)x,y,x1,x2,λ,給出下列四個條件:
a
+
b
=3
e
a
-
b
=5
e
;                 ②x1
a
+x2
b
=
0

a
b
b
0
)且λ唯一;          ④x
a
+y
b
=
0
(x+y=0)
其中能使
a
b
共線的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個條件:
①b>0>a;
②0>a>b;
③a>0>b;
④a>b>0.
其中能推出
1
a
1
b
成立的是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)一模)已知,在△ABC中,三個內(nèi)角A、B、C所對的邊分別是a、b、c,分別給出下列四個條件:
(1)tan (A-B) cosC=0;(2)sin(B+C) cos(B-C)=1;(3)acosA=bcosB;(4)sin2(A-B)+cos2C=0.
若滿足條件
(4)
(4)
,則△ABC是等腰直角三角形.(只需填寫其中一個序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)如圖,l1、l2是兩條互相垂直的異面直線,點(diǎn)P、C在直線l1上,點(diǎn)A、B在直線l2上,M、N分別是線段AB、AP的中點(diǎn),且PC=AC=a,PA=
2
a

(Ⅰ)證明:PC⊥平面ABC;
(Ⅱ)設(shè)平面MNC與平面PBC所成的角為θ(0°<θ≤90°).現(xiàn)給出下列四個條件:
CM=
1
2
AB
;②AB=
2
a
;③CM⊥AB;④BC⊥AC.
請你從中再選擇兩個條件以確定cosθ的值,并求之.

查看答案和解析>>

同步練習(xí)冊答案