(2009•金山區(qū)一模)已知,在△ABC中,三個內(nèi)角A、B、C所對的邊分別是a、b、c,分別給出下列四個條件:
(1)tan (A-B) cosC=0;(2)sin(B+C) cos(B-C)=1;(3)acosA=bcosB;(4)sin2(A-B)+cos2C=0.
若滿足條件
(4)
(4)
,則△ABC是等腰直角三角形.(只需填寫其中一個序號)
分析:根據(jù)所給的兩個數(shù)的平方和等于0,得到這兩個數(shù)字都等于0,得到A,B兩個角相等且C等于90°,得到三角形是一個等腰三角形.
解答:解:∵sin2(A-B)+cos2C=0.
∴sin2(A-B)=0,cos2C=0.
∴sin(A-B)=0,cosC=0,
∴A=B,C=90°,
∴三角形是一個等腰三角形.
故答案為:(4)
點評:本題考查三角形形狀的判斷,本題解題的關(guān)鍵是看出三角形的三個角所滿足的條件,本題是一個基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009•金山區(qū)一模)若函數(shù)f(x)、g(x)的定義域和值域都是R,則“f(x)<g(x),x∈R”成立的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•金山區(qū)一模)若f(n)為n2+1的各位數(shù)字之和(n∈N*).如:因為142+1=197,1+9+7=17,所以f(14)=17.記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2005(8)=
11
11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•金山區(qū)一模)已知函數(shù)f(x)=loga
1-mxx-1
在定義域D上是奇函數(shù),(其中a>0且a≠1).
(1)求出m的值,并求出定義域D;
(2)判斷f(x)在(1,+∞)上的單調(diào)性,并加以證明;
(3)當x∈(r,a-2)時,f(x)的值的范圍恰為(1,+∞),求a及r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•金山區(qū)一模)在(x2+
1x
)6
的二項展開式中的常數(shù)項是第
5
5
項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•金山區(qū)一模)(
1+i1-i
2010=
-1
-1
.(i為虛數(shù)單位)

查看答案和解析>>

同步練習冊答案