分析 根據(jù)已知的約束條件畫出滿足約束條件的可行域,再用角點(diǎn)法,求出目標(biāo)函數(shù)的最大值.
解答 解:滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤2}\\{x≥0,y≥0}\end{array}\right.$的可行域如下圖中陰影部分所示:
∵目標(biāo)函數(shù)Z=2x+y,
∴ZO=0,ZA=4,ZB=7,ZC=4,
故2x+y的最大值是7,
故答案為:7.
點(diǎn)評 用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點(diǎn)的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {an}為首項(xiàng)為正項(xiàng)的等比數(shù)列,若a2n-1+a2n<0,則公比q<0 | |
B. | 若{an}為遞增數(shù)列,則an+1>|an| | |
C. | {an}為等差數(shù)列,若Sn+1>Sn,則{an}單調(diào)遞增 | |
D. | {an}為等差數(shù)列,若{an}單調(diào)遞增,則Sn+1>Sn. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{64}{3}$+8π | B. | 24+8π | C. | 16+8π | D. | 8+16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1] | B. | [-2,0] | C. | [0,$\frac{6}{5}$] | D. | [-2,$\frac{6}{5}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com