11.若雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{m}$=1的離心率為$\sqrt{m}$,則此雙曲線的漸近線方程為(  )
A.y=±$\frac{\sqrt{2}}{2}$xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{1}{3}$x

分析 利用雙曲線的離心率列出方程,求出m,然后求解雙曲線的漸近線方程即可.

解答 解:雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{m}$=1的離心率為$\sqrt{m}$,e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$,可得$\sqrt{m}=\sqrt{1+\frac{m}{3}}$,解得m=$\frac{3}{2}$,∴$\frac{a}$=$\frac{\sqrt{2}}{2}$,
則此雙曲線的漸近線方程為:y=±$\frac{\sqrt{2}}{2}$x.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)已知a>0,b>0,$\frac{1}$-$\frac{1}{a}$>1.求證:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.
(2)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求證:a,b,c,d中至少有一個(gè)是負(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)為奇函數(shù)的是( 。
A.y=$\sqrt{x}$B.y=|sinx|C.y=ex-e-xD.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,已知點(diǎn)A(-a,0)、C(0,b),且S△OAC=1.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,若D(a,0),且|BD|=$\frac{4}{5}$$\sqrt{17}$,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若點(diǎn)A($\sqrt{3}$,1)的直線l1:$\sqrt{3}$x+ay-2=0與過點(diǎn)B($\sqrt{3}$,4)的直線l2交于點(diǎn)C,若△ABC是以AB為底邊的等腰三角形,則l2的方程為( 。
A.$\sqrt{3}$x+y-7=0B.$\sqrt{3}$x-y+7=0C.x+$\sqrt{3}$y-7=0D.x-$\sqrt{3}$y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x3+x,g(x)=f(x)-ax(a∈R).
(1)當(dāng)a=4時(shí),求函數(shù)g(x)的極大值;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線l的方程;
(3)若函數(shù)g(x)在[0,1]上無(wú)極值,且g(x)在[0,1]上的最大值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.用a、b表示兩條不同的直線,α、β表示兩個(gè)不同的平面,給出下列命題:
①若a∥b,a∥α,則b∥α;    ②若a⊥α,b⊥α,則a∥b;③若a∥α,b⊥α,則a⊥b;    ④若a⊥α,α∥β,則a⊥β.
其中正確的是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={x|x∈N|2≤x≤5},B={x|y=$\sqrt{3-x}$},則A∩B=( 。
A.{2}B.{2,3}C.{2,3,4}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=sin(2x-$\frac{π}{4}$)+cos(2x-$\frac{3π}{4}$),x∈R.
(1)求f(x)的最小正周期和最大值;
(2)已知α,β∈(0,$\frac{π}{2}$),且f(α)=$\sqrt{2}$,cos(α+β)=$\frac{1}{3}$,求tanβ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案