【題目】已知為常數(shù), ,函數(shù) (其中是自然對(duì)數(shù)的底數(shù)).

(1)過坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求證: ;

(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)先對(duì)函數(shù)求導(dǎo), ,可得切線的斜率,即,由是方程的解,且上是增函數(shù),可證;(2)由, ,先研究函數(shù),則,由上是減函數(shù),可得,通過研究的正負(fù)可判斷的單調(diào)性,進(jìn)而可得函數(shù)的單調(diào)性,可求出參數(shù)范圍.

試題解析:(1)),

所以切線的斜率,

整理得,顯然, 是這個(gè)方程的解,

又因?yàn)?/span>上是增函數(shù),

所以方程有唯一實(shí)數(shù)解,

(2), ,

設(shè),則

易知上是減函數(shù),從而

①當(dāng),即時(shí), , 在區(qū)間上是增函數(shù),

,∴上恒成立,即上恒成立.

在區(qū)間上是減函數(shù),所以滿足題意. 

②當(dāng),即時(shí),設(shè)函數(shù)的唯一零點(diǎn)為

上遞增,在上遞減,

又∵,∴,

又∵,

內(nèi)有唯一一個(gè)零點(diǎn)

當(dāng)時(shí), ,當(dāng)時(shí), .

從而遞減,在遞增,與在區(qū)間上是單調(diào)函數(shù)矛盾.

不合題意.綜上①②得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)定義在R上的奇函數(shù),且在(﹣∞,0)上是增函數(shù),又f(2)=0,則不等式xf(x+1)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式2x2﹣x﹣3>0解集為(
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式x2﹣ax+b<0的解集為(1,2),則不等式 的解集為(
A.( ,+∞)
B.(﹣∞,0)∪( ,+∞)
C.( ,+∞)
D.(﹣∞,0)∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是
A.16
B.8
C.4
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在2016年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),被抽取學(xué)生的成績(jī)均不低于160分,且低于185分,如圖是按成績(jī)分組得到的頻率分布直方圖.

(1)為了能選拔出優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)較高的第3組、第4組、第5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(2)在(1)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生由考官A面試,求第4組至少有一名學(xué)生被考官A面試的概.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】使函數(shù)y=sin(2x+θ)+ cos(2x+θ)為奇函數(shù),且在[0, ]上是減函數(shù)的θ一個(gè)值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)M={x| },N={x|x2+(a﹣8)x﹣8a≤0},命題p:x∈M,命題q:x∈N.
(1)當(dāng)a=﹣6時(shí),試判斷命題p是命題q的什么條件;
(2)求a的取值范圍,使命題p是命題q的一個(gè)必要但不充分條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案