5.函數(shù)y=$\frac{1}{x}$-2x的圖象關(guān)于(  )
A.y軸對(duì)稱B.x軸對(duì)稱C.原點(diǎn)對(duì)稱D.y=x對(duì)稱

分析 利用奇偶函數(shù)的性質(zhì),可對(duì)函數(shù)f(x)=$\frac{1}{x}$-2x的圖象的對(duì)稱情況作出判斷.

解答 解:函數(shù)的定義域?yàn)閧x|x≠0}.
∵f(-x)=$\frac{1}{-x}$-2(-x)=-($\frac{1}{x}$-2x)=-f(x),
∴f(x)=$\frac{1}{x}$-2x為奇函數(shù),
∴其圖象關(guān)于原點(diǎn)對(duì)稱,
故選:C.

點(diǎn)評(píng) 本題考查奇偶函數(shù)圖象的對(duì)稱性,判斷函數(shù)f(x)=$\frac{1}{x}$-2x的奇偶性是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,若$\frac{a}{cosA}$=$\frac{2cosB}$=$\frac{c}{3cosC}$,則sinB=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-2$\sqrt{3}$,0)和F2(2$\sqrt{3}$,0)的距離之和為8.
(1)求曲線C的方程;
(2)過曲線C內(nèi)一點(diǎn)M(2,1)引一條弦AB,使弦被點(diǎn)M平分,求這條弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)$\frac{1-i}{i^3}$(i是虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.i是虛數(shù)單位,則復(fù)數(shù)Z=(3+i)(1-2i)的共軛復(fù)數(shù)為5+5i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(8,4),
(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若f(cosx)=2cos2x,則f(sin15°)等于-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如果函數(shù)f(x)=sinx+acosx的圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱,那么實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合M={x|-1<x<3},N={x|-2<x<1},則M∩(∁RN)=(  )
A.{x|1≤x<3}B.{x|-2<x≤-1}C.{x|1≤x<3或-2<x≤-1}D.{x|-<x<1}

查看答案和解析>>

同步練習(xí)冊(cè)答案