6.如果f($\frac{1}{x}$)=$\frac{x}{1-x}$,則當(dāng)x≠0且x≠1時,f(x)=(  )
A.$\frac{1}{x}$(x≠0且x≠1)B.$\frac{1}{x-1}$(x≠0且x≠1)C.$\frac{1}{1-x}$(x≠0且x≠1)D.$\frac{1}{x}$-1(x≠0且x≠1)

分析 利于換元法,令t=$\frac{1}{x}$,t≠0,那么x=$\frac{1}{t}$,帶入函數(shù)化簡,從而求解.

解答 解:令t=$\frac{1}{x}$,t≠0,那么x=$\frac{1}{t}$,
則:f($\frac{1}{x}$)=$\frac{x}{1-x}$化解為:f(t)=$\frac{\frac{1}{t}}{1-\frac{1}{t}}=\frac{1}{t-1}$(t≠1)
∴f(x)=$\frac{1}{x-1}(x≠0,x≠1)$
故選B.

點評 本題考查了函數(shù)解析式的求法,利用了換元法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點A,B分別是橢圓$\frac{x^2}{36}+\frac{y^2}{20}$=1長軸的左、右頂點,點F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PA⊥PF.設(shè)M是橢圓長軸AB上的一點,M到直線AP距離等于|MB|,橢圓上的點到點M的距離d的最小值( 。
A.$\frac{{4\sqrt{3}}}{5}$B.$\sqrt{15}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a,b∈{1,2,3,4,5,6},則有不同離心率的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,(a>b)的個數(shù)為( 。
A.30B.15C.11D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z滿足:(1+i)z=i(i為虛數(shù)單位),則|z|等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{y≥0}\\{x-y+a≥0}\\{2x+y-4≤0}\end{array}\right.$(a為常數(shù))表示的平面區(qū)域的面積為3,則z=x+y的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,已知A(4,1)、B(7,5)、C(-4,7),則BC邊的中線AD的長是( 。
A.2$\sqrt{5}$B.3$\sqrt{5}$C.$\frac{5}{2}$$\sqrt{5}$D.$\frac{7}{2}$$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥BC,∠BCA=45°,PA=AD=2,AC=1,DC=$\sqrt{5}$.
(1)證明PC⊥AD;
(2)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知:sinx+siny+sinz=cosx+cosy+cosz=0,求S=tan(x+y+z)+tanxtanytanz的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.(1)若f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,則f(x)=x2-2.
(2)若f(2x-1)=x2+x,則f(x)=$\frac{1}{4}{x}^{2}+x+\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案