11.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=$\frac{1-{a}^{n+2}}{1-a}$(a≠1,n∈N*),在驗證n=1成立時,左邊的項是( 。
A.1B.1+aC.1+a+a2D.1+a+a2+a4

分析 在驗證n=1時,左端計算所得的項.把n=1代入等式左邊即可得到答案.

解答 解:用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=$\frac{1-{a}^{n+2}}{1-a}$(a≠1,n∈N*),
在驗證n=1時,把當(dāng)n=1代入,左端=1+a+a2
故選:C.

點評 此題主要考查數(shù)學(xué)歸納法證明等式的問題,屬于概念性問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)a>0,b>0,c>0,且a+b+c=1,求證:8abc≤(1-a)(1-b)(1-c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點為B,過點B且互相垂直的動直線l1,l2與橢圓的另一個交點分別為P,Q,若當(dāng)l1的斜率為2時,點P的坐標(biāo)是(-$\frac{5}{3}$,-$\frac{4}{3}$)
(1)求橢圓C的方程;
(2)若直線PQ與y軸相交于點M,設(shè)$\overrightarrow{PM}$=λ$\overrightarrow{MQ}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)拋物線y2=2px(p>0)的焦點F,已知拋物線上一點Q,其縱坐標(biāo)為4,且|QF|=4.
(1)求p的值;
(2)設(shè)點Q關(guān)于x軸的對稱點是R,直線l與拋物線交于異于Q、R的不同兩點A、B,且直線QA、QB的斜率之積為-4,求△RAB面積最小時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.用數(shù)學(xué)歸納法證明等式“1+2+3+…+(n+3)=$\frac{{({n+3})({n+4})}}{2}({n∈{N^*}})$”,當(dāng)n=1時,等式應(yīng)為1+2+3+4=$\frac{(1+3)(1+4)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.當(dāng)函數(shù)y=ax(a>1)與函數(shù)y=x有且僅有一個交點,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.過拋物線y=ax2(a>0)的焦點F作圓C:x2+y2-8y+15=0的切線,切點分別為M、N,已知直線MN:3y-11=0.
(1)求實數(shù)a的值;
(2)直線l經(jīng)過點F,且與拋物線交于點A、B,若以AB為直徑的圓與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求證:ln(23+1)+ln(33+1)+ln(43+1)+…+ln(n3+1)<$\frac{1}{4}$+3lnn!(n≥2,n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某大學(xué)為了解某專業(yè)新生的綜合素養(yǎng)情況,從該專業(yè)新生中隨機抽取了2n(n∈N*)名學(xué)生,再從這2n名學(xué)生中隨機選取其中n名學(xué)生參加科目P的測試.另n名學(xué)生參加科目Q的測試.每個科目成績分別為1分,2分,3分,4分,5分.兩個科目測試成績整理成如圖統(tǒng)計圖,已知在科目P測試中,成績?yōu)?分的學(xué)生有8人.
(Ⅰ)分別求在兩個科目中成績?yōu)?分的學(xué)生人數(shù)
〔Ⅱ)根據(jù)統(tǒng)計圖,分別估計:
(i)該專業(yè)新生在這兩個科目上的平均成績的高低;
(ii)該專業(yè)新生在這兩個科目中,哪個科目的個體成績差異較為明顯.(結(jié)論不要求證明)

查看答案和解析>>

同步練習(xí)冊答案