【題目】設(shè)f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g( )的值.

【答案】
(1)

解:∵f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2

=2 sin2x﹣1+sin2x

=2 ﹣1+sin2x

=sin2x﹣ cos2x+ ﹣1

=2sin(2x﹣ )+ ﹣1,

令2kπ﹣ ≤2x﹣ ≤2kπ+ ,求得kπ﹣ ≤x≤kπ+ ,

可得函數(shù)的增區(qū)間為[kπ﹣ ,kπ+ ],k∈Z


(2)

解:把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),可得y=2sin(x﹣ )+ ﹣1的圖象;

再把得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)=2sinx+ ﹣1的圖象,

∴g( )=2sin + ﹣1=


【解析】(1)利用三角恒等變換化簡(jiǎn)f(x)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)的增區(qū)間.(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,從而求得g( )的值.;本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求函數(shù)的值,屬于基礎(chǔ)題.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三邊長(zhǎng)是公差為2的等差數(shù)列,且最大角的正弦值為,則這個(gè)三角形的周長(zhǎng)是(

A. 18 B. 15 C. 21 D. 24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到右準(zhǔn)線的距離等于短半軸的長(zhǎng).

(1)求橢圓的方程;

(2)設(shè)是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn);

(3)在(2)的條件下,過點(diǎn)的直線與橢圓交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項(xiàng)a8;
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項(xiàng)和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論錯(cuò)誤的是 ( )

A. 若“”與“”均為假命題,則假.

B. 命題“存在”的否定是“對(duì)任意

C. ”是“”的充分不必要條件.

D. “若則a<b”的逆命題為真.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù) 滿足 ,其導(dǎo)函數(shù) 滿足 ,則下列結(jié)論中一定錯(cuò)誤的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在同一個(gè)坐標(biāo)系中畫出函數(shù)y=ax , y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知直線y=﹣2x+1與圓O:x2+y2=r2(r>0)交于M,N兩點(diǎn),且MN=

(1)求M,N的坐標(biāo);

(2)求過O,M,N三點(diǎn)的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案