【題目】若對任意的實數(shù)kb,函數(shù)與直線總相切,則稱函數(shù)為“恒切函數(shù)”.

1)判斷函數(shù)是否為“恒切函數(shù)”;

2)若函數(shù)是“恒切函數(shù)”,求實數(shù)m,n滿足的關(guān)系式;

3)若函數(shù)是“恒切函數(shù)”,求證:.

【答案】1)函數(shù)為“恒切函數(shù)”(23)證明見解析

【解析】

1)設(shè)切點為,由導數(shù)的幾何意義,以及切點為切線和函數(shù)圖象的公共點,“恒切函數(shù)”,即為,根據(jù)關(guān)系式,求解即可;

2)設(shè)切點為,由,求出,即可得出結(jié)論;

3)設(shè)切點為,由,得到,先求出關(guān)于切點方程的解或解的范圍,再由,即可求出的取值范圍.

1)函數(shù)為“恒切函數(shù)”,設(shè)切點為.

,∴

對于函數(shù).

設(shè)切點為,∴,

解得:.是“恒切函數(shù)”.

2)若函數(shù)是“恒切函數(shù)”,

設(shè)切點為.

,

解得:,即.

∴實數(shù)m,n滿足的關(guān)系式為:.

3)函數(shù)是“恒切函數(shù)”,設(shè)切點為.

,∴,

.

考查方程的解,設(shè).

,令,解得:.

∴當時,,單調(diào)遞減;

時,,單調(diào)遞增.

.

1°當

.

上有唯一零點.

又∵,

.

2°當時∵

上有唯一零點0,∴.

綜上可知:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當時,,給出下列命題:

①當時,

②函數(shù)2個零點;

的解集為;

,,都有.

其中真命題的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向左平移個單位,然后縱坐標不變,橫坐標變?yōu)樵瓉淼?/span>倍,得到的圖象,下面四個結(jié)論正確的是( )

A. 函數(shù)在區(qū)間上為增函數(shù)

B. 將函數(shù)的圖象向右平移個單位后得到的圖象關(guān)于原點對稱

C. 是函數(shù)圖象的一個對稱中心

D. 函數(shù)上的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求不等式的解集;

2)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。

晉級成功

晉級失敗

合計

16

50

合計

(1)求圖中的值;

(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認為“晉級成功”與性別有關(guān)?

(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學期望

(參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九世紀末:法國學者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內(nèi)任意選一條弦,這條弦的弦長長于這個圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”“隨機端點”“隨機中點”三個合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎(chǔ)的嚴格化.已知“隨機端點”的方法如下:設(shè)為圓上一個定點,在圓周上隨機取一點,連接,所得弦長大于圓的內(nèi)接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上為增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個不同的極值點,記作,,且,證明:為自然對數(shù)).

查看答案和解析>>

同步練習冊答案