【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到:任畫…條線段,然后把它分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了由4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每一條小線段重復(fù)上述步驟,得到由16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”;…;如此進行“n次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度大于初始線段的100倍,則至少需要構(gòu)造的次數(shù)是( )(取,)
A.16B.17C.24D.25
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)x3x2﹣2x(a∈R).
(1)當a=3時,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若對于任意x∈都有成立,求實數(shù)a的取值范圍;
(3)若過點可作函數(shù)圖象的三條不同切線,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若函數(shù)是R上的增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)討論函數(shù)在上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),證明:,當時,函數(shù)恒有兩個不同零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(),().
(1)若恒成立,求實數(shù)的取值范圍;
(2)當時,過上一點作的切線,判斷:可以作出多少條切線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個軸截面.動點M從點B出發(fā)沿著圓柱的側(cè)面到達點D,其距離最短時在側(cè)面留下的曲線Γ如圖所示.將軸截面ABCD繞著軸OO1逆時針旋轉(zhuǎn)θ(0<θ<π)后,邊B1C1與曲線Γ相交于點P.
(1)求曲線Γ長度;
(2)當時,求點C1到平面APB的距離;
(3)是否存在θ,使得二面角D﹣AB﹣P的大小為?若存在,求出線段BP的長度;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com