20.曲線f(x)=axn(a,n∈R)在點(diǎn)(1,2)處的切線方程是y=4x-2,則下列說(shuō)法正確的是( 。
A.函數(shù)f(x)是偶函數(shù)且有最大值B.函數(shù)f(x)是偶函數(shù)且有最小值
C.函數(shù)f(x)是奇函數(shù)且有最大值D.函數(shù)f(x)是奇函數(shù)且有最小值

分析 求導(dǎo)數(shù),利用f(x)=axn(a,n∈R)在點(diǎn)(1,2)處的切線方程是y=4x-2,求出a,n,即可得出結(jié)論.

解答 解:∵曲線f(x)=axn,
∴f′(x)=naxn-1,
∵f(x)=axn(a,n∈R)在點(diǎn)(1,2)處的切線方程是y=4x-2,
∴na=4,a=2,
∴n=2,
∴f(x)=2x2,
∴函數(shù)f(x)是偶函數(shù)且有最小值0,
故選:B.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計(jì)算能力,正確確定函數(shù)的解析式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=sinα+cosα\\ y=1+sin2α\end{array}\right.(α$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x為正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$ρsin(θ+\frac{π}{4})=\sqrt{2}$,曲線C2的極坐標(biāo)方程為ρ=2$\sqrt{2}acos(θ-\frac{3π}{4})(a>0)$.
(1)求直線l與曲線C1交點(diǎn)的極坐標(biāo)(ρ,θ)(ρ≥0,0≤θ<2π);
(2)若直線l與曲線C2相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知P={f(x)|存在正實(shí)數(shù)M,使得對(duì)定義域中的一切x都有|f(x)|≤M成立},h(x)=2x-$\sqrt{1-x}$,x∈[0,1],g(x)=$\sqrt{x-3}$-$\sqrt{x+2}$,則( 。
A.g(x)∉P,h(x)∈PB.g(x)∈P,h(x)∈PC.g(x)⊆P,h(x)⊆PD.g(x)∈P,h(x)∉P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.送快遞的人可能在早上6:30-7:30之間把快遞送到張老師家里,張老師離開家去工作的時(shí)間在早上7:00-8:00之間,則張老師離開家前能得到快遞的概率為( 。
A.12.5%B.50%C.75%D.87.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知四面體ABCD中,E,F(xiàn)分別是AC,BD的中點(diǎn),若AB=4,CD=2,EF⊥AB,則EF與CD所成角的度數(shù)為(  )
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知3a+3b=-9,求2a2+4ab+2b2-6的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知實(shí)數(shù)a,b,c滿足a+b+c=0,a2+b2+c2=1,則a的最大值為(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{2}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知點(diǎn)P(x,y)滿足$\left\{\begin{array}{l}3x+4y≤12\\ x-y≤0\\ x≥0\end{array}\right.$,$\frac{y+2}{x+1}$的取值范圍是[$\frac{4}{3}$,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若不等式x2+ax+b<0的解集為(-1,2),則ab的值為(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案