【題目】我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關曲線”.已知F1、F2是一對相關曲線的焦點,P是它們在第一象限的交點,當∠F1PF2=60°時,這一對相關曲線中雙曲線的離心率是( 。
A.
B.
C.
D.2
【答案】A
【解析】設F1P=m,F(xiàn)2P=n,F(xiàn)1F2=2c,
由余弦定理得(2c)2=m2+n2﹣2mncos60°,
即4c2=m2+n2﹣mn,
設a1是橢圓的長半軸,a2是雙曲線的實半軸,
由橢圓及雙曲線定義,得m+n=2a1 , m﹣n=2a2 ,
∴m=a1+a2 , n=a1﹣a2 ,
將它們及離心率互為倒數(shù)關系代入前式得3a22﹣4c2+=0,
a1=3a2 , e1e2==1,
解得e2= .
故選A.
設F1P=m,F(xiàn)2P=n,F(xiàn)1F2=2c,由余弦定理4c2=m2+n2﹣mn,設a1是橢圓的長半軸,a1是雙曲線的實半軸,由橢圓及雙曲線定義,得m+n=2a1 , m﹣n=2a2 , 由此能求出結果.
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓N經過點A(3,1),B(﹣1,3),且它的圓心在直線3x﹣y﹣2=0上.
(Ⅰ)求圓N的方程;
(Ⅱ)求圓N關于直線x﹣y+3=0對稱的圓的方程.
(Ⅲ)若點D為圓N上任意一點,且點C(3,0),求線段CD的中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x2 , a∈R,
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若x≥1時,f(x)≤0恒成立,求實數(shù)a的取值范圍;
(3)設a>0,若A(x1 , y1),B(x2 , y2)為曲線y=f(x)上的兩個不同點,滿足0<x1<x2 , 且x3∈
(x1 , x2),使得曲線y=f(x)在x=x3處的切線與直線AB平行,求證:x3< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2+Dx+Ey+3=0,圓C關于直線x+y﹣1=0對稱,圓心在第二象限,半徑為 .
(1)求圓C的方程;
(2)已知不過原點的直線l與圓C相切,且與x軸、y軸上的截距相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.
(1)求證:AM∥平面BDE;
(2)求證:AM⊥平面BDF;
(3)求A點到面BDF的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形ABCD,AB=1,BC= . 將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中( 。
A.存在某個位置,使得直線AC與直線BD垂直
B.存在某個位置,使得直線AB與直線CD垂直
C.存在某個位置,使得直線AD與直線BC垂直
D.對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017福建三明5月質檢】如圖,在四棱錐中,側面底面,底面是平行四邊形, , , , 為的中點,點在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線與平面所成的角和直線與平面所成的角相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com