【題目】已知α是第三象限角,且sinα=﹣ .
(1)求tanα與tan(α﹣ )的值;
(2)求cos2α的值.
【答案】
(1)解:因?yàn)棣潦堑谌笙藿,sinα=﹣ ,∴cosα<0.
又因?yàn)閟in2α+cos2α=1,所以 = .
故 = ,∴ = .
(2)解:由(1)知 , ,
所以,cos2α=cos2α﹣sin2α= .
【解析】(1)利用同角三角函數(shù)的基本關(guān)系,兩角差的正切公式,求得tanα與tan(α﹣ )的值.(2)由條件利用二倍角公式,求得cos2α的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正切公式的相關(guān)知識,掌握兩角和與差的正切公式:,以及對二倍角的余弦公式的理解,了解二倍角的余弦公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017廣東佛山二!已知橢圓:()的焦距為4,左、右焦點(diǎn)分別為、,且與拋物線:的交點(diǎn)所在的直線經(jīng)過.
(Ⅰ)求橢圓的方程;
(Ⅱ)分別過、作平行直線、,若直線與交于,兩點(diǎn),與拋物線無公共點(diǎn),直線與交于,兩點(diǎn),其中點(diǎn),在軸上方,求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017湖南長沙二!已知函數(shù),.
(1)證明:,直線都不是曲線的切線;
(2)若,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017廣東佛山二!設(shè)函數(shù),其中,是自然對數(shù)的底數(shù).
(Ⅰ)若是上的增函數(shù),求的取值范圍;
(Ⅱ)若,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) =(1,﹣2), =(a,﹣1), =(﹣b,0)(a>0,b>0,O為坐標(biāo)原點(diǎn)),若A、B、C三點(diǎn) 共線,則 的最小值是( )
A.4
B.
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關(guān)曲線”.已知F1、F2是一對相關(guān)曲線的焦點(diǎn),P是它們在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),這一對相關(guān)曲線中雙曲線的離心率是( 。
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一三角形三邊所在的直線方程分別為x+2y﹣5=0,y﹣2=0,x+y﹣4=0,則能夠覆蓋此三角形且面積最小的圓的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,動點(diǎn)P在底面ABCD內(nèi),且P到棱AD的距離與到面對角線BC1的距離相等,則點(diǎn)P的軌跡是( 。
A.線段
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c,且滿足csinA﹣ acosC=0.
(1)求角C的大;
(2)若c=2,求△ABC的面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com