設(shè)數(shù)列滿足: 
(I)證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;
(II)若,求數(shù)列的前項和.

(I);(II)

解析試題分析:(I)先由已知變形得,從而數(shù)列是等比數(shù)列,進而可求;(Ⅱ)由(I)及已知可先得,再根據(jù)和式的結(jié)構(gòu)特征選擇裂項相消法求和.
試題解析:(I)證明:
于是
即數(shù)列是以為公比的等比數(shù)列.   
因為
所以 
(II) 
 
所以  

考點:1、數(shù)列通項公式的求法;2、數(shù)列前項和的求法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)設(shè)函數(shù)的圖像的頂點的縱坐標構(gòu)成數(shù)列,求證:為等差數(shù)列;
(Ⅱ)設(shè)函數(shù)的圖像的頂點到軸的距離構(gòu)成數(shù)列,求的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列滿足:,,
(Ⅰ)求的通項公式及前項和
(Ⅱ)已知是等差數(shù)列,為前項和,且.求的通項公式,并證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知無窮數(shù)列中, 、、構(gòu)成首項為2,公差為-2的等差數(shù)列,、、,構(gòu)成首項為,公比為的等比數(shù)列,其中,.
(1)當,時,求數(shù)列的通項公式;
(2)若對任意的,都有成立.
①當時,求的值;
②記數(shù)列的前項和為.判斷是否存在,使得成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列滿足,且.
(1) 求數(shù)列的通項公式;
(2) 令,當數(shù)列為遞增數(shù)列時,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列滿足
(1)計算,,,由此猜想通項公式,并用數(shù)學歸納法證明此猜想;
(2)若數(shù)列滿足,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足,且
(1)當時,求出數(shù)列的所有項;
(2)當時,設(shè),證明:;
(3)設(shè)(2)中的數(shù)列的前項和為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列的公差為,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列的前項和.數(shù)列滿足:.
(1)求的通項.并比較的大小;
(2)求證:.

查看答案和解析>>

同步練習冊答案