設(shè)數(shù)列滿足:,,.
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)已知是等差數(shù)列,為前項(xiàng)和,且,.求的通項(xiàng)公式,并證明:.
(Ⅰ),;(Ⅱ),證明詳見解析.
解析試題分析:(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和,由已知,,,數(shù)列是以為首項(xiàng),為公比等比數(shù)列,由等比數(shù)列的通項(xiàng)公式及前項(xiàng)和公式可得;(Ⅱ)求的通項(xiàng)公式,由是等差數(shù)列,為前項(xiàng)和,且,,可設(shè)等差數(shù)列的公差為,根據(jù)已知條件,求出公差的值,從而得到;證明:,由,分母是等差數(shù)列連續(xù)兩項(xiàng)積,像這類數(shù)列,求其前項(xiàng)和,常常采用拆項(xiàng)相消法,即,從而解出.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ec/5/1mflb3.png" style="vertical-align:middle;" />,又,所以,因此是首項(xiàng)為1,公比為3的等比數(shù)列,所以,;
(Ⅱ)設(shè)等差數(shù)列的公差為,依題意,,所以,即,故. 由此得,. 所以, .因此所證不等式成立.
考點(diǎn):等比數(shù)列的定義及通項(xiàng)公式,等差數(shù)列的通項(xiàng)公式,拆項(xiàng)相消法求數(shù)列的前項(xiàng)和,考查學(xué)生的運(yùn)算能力以及轉(zhuǎn)化與化歸的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和滿足,又,.
(1)求實(shí)數(shù)k的值;
(2)問數(shù)列是等比數(shù)列嗎?若是,給出證明;若不是,說明理由;
(3)求出數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比數(shù)列.
(Ⅰ)求a的值及數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{logan}的前n項(xiàng)和為Tn.求使Tn>bn的最小正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列 的所有項(xiàng)均為正數(shù),首項(xiàng)且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前項(xiàng)和為若求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列的前項(xiàng)和為,對任意正整數(shù)都有,記.
(1)求,的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)若求證:對任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為且,數(shù)列滿足且.
(1)求的通項(xiàng)公式;
(2)求證:數(shù)列為等比數(shù)列;
(3)求前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足:
(I)證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(II)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且,的公比.
(1)求與;(2)求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com