【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點(diǎn)

(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端

時即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;

(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請將甲

乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.

【答案】

【解析】試題分析:(1)先求出B,在三角形BDE中,利用余弦定理求出DE(2)先在直角三角形CEF中求出,在三角形BDE中由正弦定理得代入得出y與θ的關(guān)系,求出最小值.

試題解析:

(1)依題意得BD=300,BE=100,在三角形ABC中 在三角形BDE中,由余弦定理得

(2)由題意得 ,在直角三角形CEF中, ,

在三角形BDE中由正弦定理得

所以當(dāng)時, 有最小值. 即甲乙之間的最小距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的極值;

(Ⅱ)若函數(shù)的圖像與函數(shù)的圖像在區(qū)間上有公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,一直線過點(diǎn)

①若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;

②若直線 軸正半軸交于 兩點(diǎn),當(dāng)面積為 時求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中實(shí)數(shù)

(Ⅰ)判斷是否為函數(shù)的極值點(diǎn),并說明理由;

(Ⅱ)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在拋物線 的準(zhǔn)線上,記的焦點(diǎn)為,過點(diǎn)且與軸垂直的直線與拋物線交于, 兩點(diǎn),則線段的長為( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為2的正方形, ,且, 中點(diǎn).

(Ⅰ)求證: 平面;  

求二面角的平面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,

已知某圓的極坐標(biāo)方程為:

(1)將極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)若點(diǎn) 在該圓上,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時, ,則對任意,函數(shù)的零點(diǎn)個數(shù)至多有( )

A. 3個 B. 4個 C. 6個 D. 9個

查看答案和解析>>

同步練習(xí)冊答案