【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點(diǎn).
(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端
時即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;
(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請將甲
乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的極值;
(Ⅱ)若函數(shù)的圖像與函數(shù)的圖像在區(qū)間上有公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,一直線過點(diǎn) ,
①若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;
②若直線與 軸正半軸交于 兩點(diǎn),當(dāng)面積為 時求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中實(shí)數(shù).
(Ⅰ)判斷是否為函數(shù)的極值點(diǎn),并說明理由;
(Ⅱ)若在區(qū)間上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線: 的準(zhǔn)線上,記的焦點(diǎn)為,過點(diǎn)且與軸垂直的直線與拋物線交于, 兩點(diǎn),則線段的長為( )
A. 4 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為2的正方形, ,且, 為中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的平面角的余弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,
已知某圓的極坐標(biāo)方程為: .
(1)將極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點(diǎn) 在該圓上,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時, ,則對任意,函數(shù)的零點(diǎn)個數(shù)至多有( )
A. 3個 B. 4個 C. 6個 D. 9個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com