【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

【答案】(1) (2)n(n+1)+2n-1

【解析】試題分析:(1)將等差數(shù)列的已知條件化簡(jiǎn)為首項(xiàng)和公差表示,求出基本量得到通項(xiàng)公式,借助于為等比數(shù)列,求出通項(xiàng)公式bn-an=(b1-a1)qn-1=2n-1,進(jìn)而得到通項(xiàng);(2)根據(jù)數(shù)列的通項(xiàng)公式可知求和時(shí)采用分組求和,分為等差等比數(shù)列各一組分別求和

試題解析:

(1)設(shè)等差數(shù)列的公差為d,由題意得d= ,所以

設(shè)等比數(shù)列 的公比為q,由題意得 所以bn-an=(b1-a1)qn-1=2n-1,從而 .

(2)由(1)可知,數(shù)列 的前n項(xiàng)n(n+1),數(shù)列的前n項(xiàng)和為2n-1 所以數(shù)列的前n項(xiàng)和為n(n+1)+2n-1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ).

(Ⅰ)求函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2an﹣2(nN+

(1)求{an}的通項(xiàng)公式;

(2)若bn=3nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 ,與軸不重合的直線經(jīng)過(guò)左焦點(diǎn),且與橢圓相交于, 兩點(diǎn),弦的中點(diǎn)為,直線與橢圓相交于 兩點(diǎn).

(Ⅰ)若直線的斜率為1,求直線的斜率;

(Ⅱ)是否存在直線,使得成立?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點(diǎn)

(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端

時(shí)即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時(shí)甲乙兩人之間的距離;

(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請(qǐng)將甲

乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|ax+1|+|2x﹣1|(a∈R).

(1)當(dāng)a=1時(shí),求不等式f(x)≥2的解集;

(2)若f(x)≤2xx[,1]時(shí)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲船以每小時(shí) 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,此時(shí)兩船相距20海里,當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距 海里,問乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 且cos( )= ,sin 求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 恒過(guò)定點(diǎn),圓經(jīng)過(guò)點(diǎn)和點(diǎn),且圓心在直線上.

(1)求定點(diǎn)的坐標(biāo);

(2)求圓的方程;

(3)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn),問:在軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案