設(shè)定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(m)+f(m-1)>0,則實(shí)數(shù)m的范圍是
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行等價(jià)轉(zhuǎn)化即可.
解答: 解:∵f(x)是定義在[-2,2]上的奇函數(shù),且f(x)在[0,2]上是減函數(shù),
∴f(x)在[-2,0]也是減函數(shù),
∴f(x)在[-2,2]上單調(diào)遞減…(2分)
又f(m-1)+f(m)>0?f(m)>-f(m-1)=f(1-m),
即f(1-m)<f(m),
-2≤1-m≤2
-2≤m≤2
1-m>m
…(6分)
即:
-1≤m≤3
-2≤m≤2
m<
1
2
,所以-1≤m<
1
2
…(11分)
故滿足條件的m的值為-1≤m<
1
2
…(12分),
故答案為:-1≤m<
1
2
點(diǎn)評(píng):本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=2,b=
2
,A=45°,則B等于( 。
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log2
2-x
2+x
的圖象關(guān)于
 
對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)a,b,c成等差數(shù)列,且a2+b2+c2=1則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2(x-1)+
3-x
的定義域?yàn)?div id="rpfbl5t" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}是遞增數(shù)列,若a5-a1=60,a4-a2=24則公比q為(  )
A、
1
2
B、2
C、
1
2
或-2
1
2
D、2或
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“函數(shù)f(x)=ax2-4x(a∈R)在(-∞,2]上單調(diào)遞減”,命題q:“不等式16x2-16(a-1)x+1≤0的解集為∅”,若命題“?p或?q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知I={不超過(guò)5的正整數(shù)},A={x|x2-5x+q=0},B={x|x2+px+12=0},且∁IA∪B={1,3,4,5},則p+q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(2x+
π
3
B、f(x)=2sin(x+
π
3
C、f(x)=2sin(2x+
π
6
D、f(x)=2sin(x+
π
6

查看答案和解析>>

同步練習(xí)冊(cè)答案