【題目】如圖所示,在直三棱柱中,,,,,點在線段.

1)若,求異面直線所成角的余弦值;

2)若直線與平面所成角為,試確定點的位置.

【答案】12)點M是線段的中點.

【解析】

1)以為坐標原點,分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標系,得到,再代入向量夾角公式計算,即可得答案;

(2)設(shè),得,直線與平面所成角為,得到關(guān)于的方程,解方程即可得到點的位置.

為坐標原點,分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標系,則,,,.

1)因為,所以.

所以,.

所以.

所以異面直線所成角的余弦值為.

2)由,,

,.

設(shè)平面的法向量為,由,

,則,,所以平面的一個法向量為.

因為點在線段上,所以可設(shè),所以,

因為直線與平面所成角為,所以.

,得,

解得.

因為點在線段上,所以,

即點是線段的中點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關(guān)心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是(

A.月工資增長率最高的為8月份

B.該銷售人員一年有6個月的工資超過4000

C.由此圖可以估計,該銷售人員20206,78月的平均工資將會超過5000

D.該銷售人員這一年中的最低月工資為1900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,以為折痕把折起,使點到達點的位置,且.

1)證明:平面

2)若的中點,二面角等于60°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校周五的課程表設(shè)計中,要求安排8節(jié)課(上午4節(jié)下午4節(jié)),分別安排語文數(shù)學(xué)英語物理化學(xué)生物政治歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數(shù)學(xué)和英語在安排時必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有( ).

A.4800B.2400C.1200D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條東西流向的筆直河流,現(xiàn)利用航拍無人機監(jiān)控河流南岸相距150米的兩點處(的正西方向),河流北岸的監(jiān)控中心的正北方100米處,監(jiān)控控制車的正西方向,且在通向的沿河路上運動,監(jiān)控過程中,保證監(jiān)控控制車到無人機和到監(jiān)控中心的距離之和150米,平面始終垂直于水平面,且兩點間距離維持在100.

1)當監(jiān)控控制車到監(jiān)控中心的距離為100米時,求無人機距離水平面的距離;

2)若記無人機處的俯角(),監(jiān)控過程中,四棱錐內(nèi)部區(qū)域的體積為監(jiān)控影響區(qū)域,請將表示為關(guān)于的函數(shù),并求出監(jiān)控影響區(qū)域的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

(Ⅰ)討論函數(shù)在定義域上的單調(diào)性;

(Ⅱ)若函數(shù)的圖象在點處的切線與直線平行,且對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖過拋物線的焦點的直線依次交拋物線及準線于點,若,且,則

A.2B.C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美寓意美好的曲線,曲線就是其中之一(如圖).給出下列三個結(jié)論:

①曲線恰好經(jīng)過6個整點(即橫縱坐標均為整數(shù)的點);

②曲線上存在到原點的距離超過的點;

③曲線所圍成的心形區(qū)域的面積小于3

其中,所有錯誤結(jié)論的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處的切線方程為

1)求,

2)函數(shù)圖像與軸負半軸的交點為,且在點處的切線方程為,函數(shù),,求的最小值;

3)關(guān)于的方程有兩個實數(shù)根,且,證明:

查看答案和解析>>

同步練習(xí)冊答案