8.若cosθ<0,且sin2θ<0,則角θ的終邊所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 sin2θ=2sinθcosθ,因?yàn)閏osθ<0,所以sinθ>0,可以判定角θ的終邊所在象限.

解答 解:由sin2θ=2sinθcosθ,因?yàn)閏osθ<0,所以sinθ>0,
可以判定角θ的終邊所在的象限為第二象限.
故選B.

點(diǎn)評(píng) 本題考查象限角,三角函數(shù)值的符號(hào),二倍角的正弦,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的a,b分別為24,18,則輸出的a=( 。
A.3B.4C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某四棱錐的三視圖如圖所示,俯視圖是一個(gè)等腰直角三角形,則該四棱錐的表面積是( 。
A.2$\sqrt{2}$+2$\sqrt{3}$+2B.3$\sqrt{2}$+2$\sqrt{3}$+3C.2$\sqrt{2}$+$\sqrt{3}$+2D.3$\sqrt{2}$+$\sqrt{3}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則該幾何體的外接球的體積為( 。
A.$\frac{\sqrt{3}}{3}$πB.πC.$\frac{26}{3}$πD.$\frac{32\sqrt{3}}{27}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列可以用來分析身高和體重之間的關(guān)系的是( 。
A.殘差分析B.回歸分析C.等高條形圖D.獨(dú)立性檢驗(yàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\frac{π}{4}<α<\frac{3π}{4},0<β<\frac{π}{4},cos(\frac{π}{4}+α)=-\frac{4}{5},sin(\frac{3π}{4}+β)=\frac{12}{13}$.
(1)求sin(α+β)的值;
(2)求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=x-\frac{1}{x}$,
(1)函數(shù)$F(x)=f({e^x})-k({x+\frac{x^3}{6}})$,其中k為實(shí)數(shù),
①求F'(0)的值;
②對(duì)?x∈(0,1),有F(x)>0,求k的最大值;
(2)若$g(x)=\frac{{{x^2}+2lnx}}{a}$(a為正實(shí)數(shù)),試求函數(shù)f(x)與g(x)在其公共點(diǎn)處是否存在公切線,若存在,求出符合條件的a的個(gè)數(shù),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)p:|4x-3|≤1,q:(x-a)(x-a-1)≤0,若:非q是非p的充分不必要條件,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示的程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a=14,b=21,則輸出的a=( 。
A.2B.3C.7D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案