12.已知函數(shù)f(x)=aex-2x-2a,且a∈[1,2],設(shè)函數(shù)f(x)在區(qū)間[0,ln2]上的最小值為m,則m的取值范圍是( 。
A.[-2,-2ln2]B.[-2,-$\frac{1}{e}$]C.[-2ln2,-1]D.[-1,-$\frac{1}{e}$]

分析 構(gòu)造函數(shù)g(a),根據(jù)a的范圍,求出f(x)的最大值,設(shè)為M(x),求出M(x)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.

解答 解:構(gòu)造函數(shù)g(a)=(ex-2)a-2x是關(guān)于a的一次函數(shù),
∵x∈[0,ln2],∴ex-2<0,即y=g(a)是減函數(shù),
∵a∈[1,2],∴f(x)min=2(ex-2)-2x,設(shè)M(x)=2(ex-2)-2x,
則M′(x)=2ex-2,∵x∈[0,ln2],
∴M′(x)≥0,則M(x)在[0,ln2]上遞增,
∴M(x)min=M(0)=2,M(x)max=M(ln2)=-2ln2,
m的取值范圍是[-2,-2ln2],
故選:A.

點(diǎn)評(píng) 本題考查了一次函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了轉(zhuǎn)化能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)a<0,(x2+2017a)(x+2016b)≥0在(a,b)上恒成立,則b-a的最大值為2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.過(guò)橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦點(diǎn)的直線$x+y-\sqrt{3}=0$交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為$\frac{1}{2}$,則橢圓M的方程為$\frac{x^2}{6}+\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知圓C:(x-$\sqrt{3}$)2+(y-1)2=1和兩點(diǎn)A(-t,0),B(t,0)(t>0),若圓C上存在點(diǎn)P,使得∠APB=90°,則t的取值范圍是(  )
A.(0,2]B.[1,2]C.[2,3]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.?dāng)?shù)列{an}滿足an+1=(2|sin$\frac{nπ}{2}$|-1)an+2n,則數(shù)列{an}的前100項(xiàng)和為(  )
A.5050B.5100C.9800D.9850

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合M={0,1},N={x|x=2n,n∈Z},則M∩N為( 。
A.{0}B.{1}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列,滿足a1+2a2=S5,下列結(jié)論中錯(cuò)誤的是( 。
A.S9=0B.S5最小C.S3=S6D.a5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知三棱椎S-ABC的各頂點(diǎn)都在一個(gè)球面上,球心O在AB上,SO⊥底面ABC,球的體積與三棱錐體積之比是4π,AC=$\sqrt{2}$,則該球的表面積等于(  )
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列命題正確的是( 。
A.y=x+$\frac{1}{x}$的最小值為2
B.命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”
C.“x>2“是“$\frac{1}{x}$<$\frac{1}{2}$”的充要條件
D.?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x

查看答案和解析>>

同步練習(xí)冊(cè)答案