20.已知圓C:(x-$\sqrt{3}$)2+(y-1)2=1和兩點A(-t,0),B(t,0)(t>0),若圓C上存在點P,使得∠APB=90°,則t的取值范圍是( 。
A.(0,2]B.[1,2]C.[2,3]D.[1,3]

分析 根據(jù)圓心C到O(0,0)的距離為2,可得圓C上的點到點O的距離的最大值為3,最小值為1,再由∠APB=90°,可得PO=$\frac{1}{2}$AB=t,從而得到答案.

解答 解:圓C:(x-$\sqrt{3}$)2+(y-1)2=1的圓心C($\sqrt{3}$,1),半徑為1,
∵圓心C到O(0,0)的距離為2,
∴圓C上的點到點O的距離的最大值為3,最小值為1,
再由∠APB=90°,以AB為直徑的圓和圓C有交點,可得PO=$\frac{1}{2}$AB=t,
故有1≤t≤3,
故選:D.

點評 本題考查實數(shù)值的取值范圍的求法,是中檔題,解題時要認真審題,注意圓的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.三棱錐S-ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則該三棱錐S-ABC的外接球的表面積為( 。
A.32πB.$\frac{112π}{3}$C.$\frac{28π}{3}$D.$\frac{64}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2≤0\\ x+y-2≥0\end{array}\right.$,則$z=\frac{y}{x}$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,若輸出結(jié)果是5,則輸入的整數(shù)p的可能性有(  )
A.6種B.7種C.8種D.9種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐 P-ABCD 中,底面 ABCD是菱形,PA⊥平面 ABCD,PA=3,F(xiàn) 是棱 PA 上的一個動點,E 為 PD 的中點.
(Ⅰ)求證:平面 BDF⊥平面 PCF;
(Ⅱ)若 AF=1,求證:CE∥平面 BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義域為R的偶函數(shù)f(x)在(-∞,0]上是減函數(shù),且f(1)=2,則不等式f(log2x)>2的解集為( 。
A.(2,+∞)B.$(0,\frac{1}{2})∪(2,+∞)$C.$(0,\frac{{\sqrt{2}}}{2})∪(\sqrt{2},+∞)$D.$(\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=aex-2x-2a,且a∈[1,2],設(shè)函數(shù)f(x)在區(qū)間[0,ln2]上的最小值為m,則m的取值范圍是( 。
A.[-2,-2ln2]B.[-2,-$\frac{1}{e}$]C.[-2ln2,-1]D.[-1,-$\frac{1}{e}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z=$\frac{(i-1)^{2}+1}{{i}^{2}}$的實部為(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.滿足條件{1,3}∪A={1,3,5}所有集合A的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案