若點P是曲線y=x2-lnx任意一點,則點P到直線y=x-2的最小值為
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,作圖題,導數(shù)的綜合應用
分析:由題意作圖,故當點P是曲線的切線中與直線y=x-2平行的直線的切點時,最近;從而解得.
解答: 解:由題意作圖如下,

當點P是曲線的切線中與直線y=x-2平行的直線的切點時,最近;
故令y′=2x-
1
x
=1解得,x=1;
故點P的坐標為(1,1);
故點P到直線y=x-2的最小值為
|1-2-1|
1+1
=
2
;
故答案為:
2
點評:本題考查了幾何意義的運用及導數(shù)的綜合應用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:


一個多面體的三視圖和直觀圖如圖所示,其中D為AA1的中點.
(1)求平面B1DC把多面體ABC-A1B1C1分成兩部分的體積之比;
(2)在線段B1C上是否存在一點E,使A1E∥平面BDC,若存在,指出E點的位置,若不存在,請說明理由;
(3)求直線BD與平面B1DC夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系XOY中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知曲線C 的極坐標方程為 ρsin2θ=4cosθ,直線l的參數(shù)方程為
x=tcosa
y=1+tsina
,(t為參數(shù),0≤a<π).
(Ⅰ)化曲線C 的極坐標方程為直角坐標方程;
(Ⅱ)若直線l 經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ•cosθ=
1
8
,且
π
4
<θ<
π
2
,則cosθ-sinθ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的方程x2+mx+m+n=0的兩根分別為橢圓和雙曲線的離心率.記分別以m,n為橫、縱坐標的點A(m,n)表示的平面區(qū)域D.若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點(2,f(2))處的切線與y軸垂直,求a的值;
(2)當a>0時,求函數(shù)f(x)在區(qū)間(0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到A1DE的位置,使A2C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點,求CM與平面A1BE所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
3
=1的一條漸近線被圓(x-2)2+y2=4所截得的弦長為2,則該雙曲線的實軸長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分別是CC1、C1D1、D1D、DC的中點,N是BC的中點,點M在四邊形EFGH上或其內(nèi)部運動,且使MN⊥AC.對于下列命題:
①點M可以與點H重合;
②點M可以與點F重合;
③點M可以在線段FH上;
④點M可以與點E重合.
其中正確命題的序號是
 
(把你認為正確命題的序號都填上).

查看答案和解析>>

同步練習冊答案