【題目】如圖,橢圓的離心率是,左右焦點(diǎn)分別為,,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),當(dāng)直線過(guò)時(shí),的周長(zhǎng)為.

1)求橢圓的方程;

2)當(dāng)時(shí),求直線方程;

3)已知點(diǎn),直線,的斜率分別為,.問(wèn)是否存在實(shí)數(shù),使得恒成立?

【答案】(1) (2) (3)存在,

【解析】

1)由焦點(diǎn)三角形的周長(zhǎng)特點(diǎn)可求出值,再結(jié)合橢圓離心率是,可求出,進(jìn)而求得橢圓標(biāo)準(zhǔn)方程;

2),設(shè)直線方程為,,可聯(lián)立直線方程和橢圓標(biāo)準(zhǔn)方程,得出兩根和與積的表達(dá)式,再結(jié)合,代換出的關(guān)系式;

3)先用必要性探路,找特殊情況,當(dāng)軸可知,此時(shí)存在使得成立,根據(jù)題意和斜率定義表示出,結(jié)合(2)中韋達(dá)定理即可得證

1)由橢圓定義知的周長(zhǎng)為,

所以,所以

又離心率,所以,所以

所以橢圓的方程為.

2)當(dāng)軸,

所以可設(shè),,

,消去

所以

因?yàn)?/span>,

所以,即代入化簡(jiǎn)得

所以

解得

所以直線方程為:,

3)當(dāng)軸可知,此時(shí)存在使得成立,

下面證明當(dāng)時(shí)恒成立

因?yàn)?/span>

所以恒成立

即存在,使得恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)已知,若函數(shù)沒(méi)有零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列的每一項(xiàng)都不等于零,且對(duì)于任意的,都有為常數(shù)),則稱數(shù)列為“類等比數(shù)列”;已知數(shù)列滿足:,對(duì)于任意的,都有;

1)求證:數(shù)列是“類等比數(shù)列”;

2)若是單調(diào)遞減數(shù)列,求實(shí)數(shù)的取值范圍;

3)若,求數(shù)列的前項(xiàng)之積取最大值時(shí)的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某產(chǎn)品的銷售額與廣告費(fèi)用之間的關(guān)系如下表:

(單位:萬(wàn)元)

0

1

2

3

4

(單位:萬(wàn)元)

10

15

30

35

若根據(jù)表中的數(shù)據(jù)用最小二乘法求得對(duì)的回歸直線方程為,則下列說(shuō)法中錯(cuò)誤的是(

A.產(chǎn)品的銷售額與廣告費(fèi)用成正相關(guān)

B.該回歸直線過(guò)點(diǎn)

C.當(dāng)廣告費(fèi)用為10萬(wàn)元時(shí),銷售額一定為74萬(wàn)元

D.的值是20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某款冰淇淋的包裝盒為圓臺(tái),盒蓋為直徑為的圓形紙片,每盒冰淇淋中包含有香草口味、巧克力口味和草莓口味冰淇淋球各一個(gè),假定每個(gè)冰淇淋球都是半徑為的球體,三個(gè)冰淇淋球兩兩相切,且都與冰淇淋盒蓋、盒底和盒子側(cè)面的曲面相切,則冰淇淋盒的體積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為,對(duì)于任意正整數(shù)m、n及正常數(shù)q,當(dāng)時(shí),恒成立,若存在常數(shù),使得為等差數(shù)列,則常數(shù)c的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市《城市總體規(guī)劃(年)》提出到年實(shí)現(xiàn)“分鐘社區(qū)生活圈”全覆蓋的目標(biāo),從教育與文化、醫(yī)療與養(yǎng)老、交通與購(gòu)物、休閑與健身個(gè)方面構(gòu)建“分鐘社區(qū)生活圈”指標(biāo)體系,并依據(jù)“分鐘社區(qū)生活圈”指數(shù)高低將小區(qū)劃分為:優(yōu)質(zhì)小區(qū)(指數(shù)為)、良好小區(qū)(指數(shù)為)、中等小區(qū)(指數(shù)為)以及待改進(jìn)小區(qū)(指數(shù)為個(gè)等級(jí).下面是三個(gè)小區(qū)個(gè)方面指標(biāo)的調(diào)查數(shù)據(jù):

注:每個(gè)小區(qū)“分鐘社區(qū)生活圈”指數(shù),其中、、、為該小區(qū)四個(gè)方面的權(quán)重,、、、為該小區(qū)四個(gè)方面的指標(biāo)值(小區(qū)每一個(gè)方面的指標(biāo)值為之間的一個(gè)數(shù)值).

現(xiàn)有個(gè)小區(qū)的“分鐘社區(qū)生活圈”指數(shù)數(shù)據(jù),整理得到如下頻數(shù)分布表:

分組

頻數(shù)

)分別判斷、、三個(gè)小區(qū)是否是優(yōu)質(zhì)小區(qū),并說(shuō)明理由;

)對(duì)這個(gè)小區(qū)按照優(yōu)質(zhì)小區(qū)、良好小區(qū)、中等小區(qū)和待改進(jìn)小區(qū)進(jìn)行分層抽樣,抽取個(gè)小區(qū)進(jìn)行調(diào)查,若在抽取的個(gè)小區(qū)中再隨機(jī)地選取個(gè)小區(qū)做深入調(diào)查,記這個(gè)小區(qū)中為優(yōu)質(zhì)小區(qū)的個(gè)數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題P:函數(shù)|fa|2,命題Q:集合A={x|x2+a+2x+1=0xR},B={x|x0}AB=

1)分別求命題P、Q為真命題時(shí)的實(shí)數(shù)a的取值范圍;

2)當(dāng)實(shí)數(shù)a取何范圍時(shí),命題P、Q中有且僅有一個(gè)為真命題;

3)設(shè)P、Q皆為真時(shí)a的取值范圍為集合S,若RTS,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我們的教材必修一中有這樣一個(gè)問(wèn)題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:

方案一:每天回報(bào)元;

方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)元;

方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.

記三種方案第天的回報(bào)分別為,,.

1)根據(jù)數(shù)列的定義判斷數(shù)列,的類型,并據(jù)此寫出三個(gè)數(shù)列的通項(xiàng)公式;

2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案