【題目】已知正項數(shù)列的前n項和為,對于任意正整數(shù)m、n及正常數(shù)q,當(dāng)時,恒成立,若存在常數(shù),使得為等差數(shù)列,則常數(shù)c的值為______
【答案】
【解析】
可令m=n﹣1,結(jié)合數(shù)列的遞推式和等比數(shù)列的通項公式和求和公式,討論q是否為1,結(jié)合等差數(shù)列的通項公式和對數(shù)的運算性質(zhì),可得所求結(jié)論.
解:因為對任意正整數(shù)n,m,
當(dāng)n>m時,Sn﹣Sm=qmSn﹣m總成立,
所以n≥2時,令m=n﹣1,得到Sn﹣Sn﹣1=qn﹣1S1,即an=a1qn﹣1=qn﹣1,
當(dāng)n=1時,也成立,
所以an=qn﹣1,
當(dāng)q=1時,Sn=n,q≠1時,Sn,
{lg(c﹣Sn)}為等差數(shù)列,可得q≠1,
lg(c)=lgnlgq﹣lg(1﹣q)為等差數(shù)列,
即有c(0<q<1),
故答案為:c(0<q<1).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說法錯誤的是( )
A. 該超市2018年的12個月中的7月份的收益最高
B. 該超市2018年的12個月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)玩游戲,對于給定的實數(shù),按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一枚均勻的硬幣,如果出現(xiàn)兩個正面朝上或兩個反面朝上,則把乘以2后再減去12,;如果出現(xiàn)一個正面朝上,一個反面朝上,則把除以2后再加上12,這樣就得到一個新的實數(shù),對實數(shù)仍按上述方法進行一次操作,又得到一個新的實數(shù),當(dāng)時,甲獲勝,否則乙獲勝,若甲獲勝的概率為,則的取值范圍是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)若,記函數(shù)的兩個極值點為,(其中),當(dāng)的最大值為時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率是,左右焦點分別為,,過點的動直線與橢圓相交于,兩點,當(dāng)直線過時,的周長為.
(1)求橢圓的方程;
(2)當(dāng)時,求直線方程;
(3)已知點,直線,的斜率分別為,.問是否存在實數(shù),使得恒成立?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線(為常數(shù)).
(i)給出下列結(jié)論:
①曲線為中心對稱圖形;
②曲線為軸對稱圖形;
③當(dāng)時,若點在曲線上,則或.
其中,所有正確結(jié)論的序號是_________.
(ii)當(dāng)時,若曲線所圍成的區(qū)域的面積小于,則的值可以是_________.(寫出一個即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為等邊三角形,為等腰直角三角形,.平面平面ABD,點E與點D在平面ABC的同側(cè),且,.點F為AD中點,連接EF.
(1)求證:平面ABC;
(2)求證:平面平面ABD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),且,則方程在區(qū)間上的所有實數(shù)根之和最接近下列哪個數(shù)( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每個國家身高正常的標準是不一樣的,不同年齡、不同種族、不同地區(qū)身高都是有差異的,我們國家會定期進行0~18歲孩子身高體重全國性調(diào)查,然后根據(jù)這個調(diào)查結(jié)果制定出相應(yīng)的各個年齡段的身高標準.一般測量出一個孩子的身高,對照一下身高體重表,如果在平均值標準差以內(nèi)的就說明你的孩子身高是正常的,否則說明你的孩子可能身高偏矮或偏高了.根據(jù)科學(xué)研究0~18歲的孩子的身高服從正態(tài)分布.在某城市隨機抽取100名18歲男大學(xué)生得到其身高()的數(shù)據(jù).
(1)記表示隨機抽取的100名18歲男大學(xué)生身高的數(shù)據(jù)在之內(nèi)的人數(shù),求及的數(shù)學(xué)期望.
(2)若18歲男大學(xué)生身高的數(shù)據(jù)在之內(nèi),則說明孩子的身高是正常的.
(i)請用統(tǒng)計學(xué)的知識分析該市18歲男大學(xué)生身高的情況;
(ii)下面是抽取的100名18歲男大學(xué)生中20名大學(xué)生身高()的數(shù)據(jù):
1.65 | 1.62 | 1.74 | 1.82 | 1.68 | 1.72 | 1.75 | 1.66 | 1.73 | 1.67 |
1.86 | 1.81 | 1.74 | 1.69 | 1.76 | 1.77 | 1.69 | 1.78 | 1.63 | 1.68 |
經(jīng)計算得,,其中為抽取的第個學(xué)生的身高,.用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計,剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計和的值.(精確到0.01)
附:若隨機變量服從正態(tài)分布,則,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com