【題目】已知數(shù)列的各項均不為零.設數(shù)列的前n項和為Sn,數(shù)列的前n項和為Tn, 且

(1)求的值;

(2)證明:數(shù)列是等比數(shù)列;

(3)若對任意的恒成立,求實數(shù)的所有值.

【答案】(1);(2)數(shù)列是以1為首項,為公比的等比數(shù)列;(3)0

【解析】

(1)令n=1,n=2列關(guān)于的方程求解即可;(2)因為, ①,②,②①得

進一步有④,③④得,檢驗n=1 成立,即可證明是等比數(shù)列(3)由(2)將代入不等式,由對任意的恒成立,所以適合,討論,當為奇數(shù)時恒成立,和,當為奇數(shù)時恒成立,通過證明單調(diào)減,,即(*),說明上面兩個不等式不恒成立,推得矛盾,即可求得只有合適

1)因為,

,得,因為,所以

,得,即

因為,所以

2)因為, ①

所以, ②

①得,,

因為,所以,③

所以, ④

時,③④得,,即

因為,所以

又由(1)知,,,所以

所以數(shù)列是以1為首項,為公比的等比數(shù)列.

3)由(2)知,

因為對任意的,恒成立,

所以的值介于之間.

因為對任意的恒成立,所以適合.

,當為奇數(shù)時,恒成立,從而有恒成立.

,因為,

所以,即,所以(*),

從而當時,有,所以不符.

,當為奇數(shù)時,恒成立,從而有恒成立.

由(*)式知,當時,有,所以不符.

綜上,實數(shù)的所有值為0

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O經(jīng)過橢圓C=1ab0)的兩個焦點以及兩個頂點,且點(b,)在橢圓C上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線l與圓O相切,與橢圓C交于MN兩點,且|MN|=,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱 中,,,,且

(Ⅰ)求證:平面 ;

(Ⅱ) 求證: ;

(Ⅲ) ,判斷直線 與平面 是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“中國人均讀書4.3本(包括網(wǎng)絡文學和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復引用,出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進行年齡調(diào)查,隨機抽取了一天40名讀書者進行調(diào)查,將他們的年齡分成6段: , , , , 后得到如圖所示的頻率分布直方圖.

問:

(1)估計在40名讀書者中年齡分布在的人數(shù);

(2)求40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直三棱柱ABCA1B1C1中,側(cè)面BCC1B1為正方形,A1B1⊥B1C1.設A1C與AC1交于點D,B1C與BC1交于點E.

求證:(1)DE∥平面ABB1A1;

(2)BC1⊥平面A1B1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}n項和為Sn,滿足Sn+14an+2nN+),且a11,

1)若cn,求證:數(shù)列{cn}是等差數(shù)列.

2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,該幾何體由半圓柱體與直三棱柱構(gòu)成,半圓柱體底面直徑,D為半圓弧的中點,若異面直線BD所成角的大小為

1)證明:平面;

2)求該幾何體的表面積和體積;

3)求點D到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】①一個命題的逆命題為真,它的否命題也一定為真;

②在中,“”是“三個角成等差數(shù)列”的充要條件.

的充要條件;

④命題不等式x2x6>0的解為x<3x>2”的逆否命題是“若-3≤x≤2,則x2x6≤0

以上說法中,判斷錯誤的有___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個結(jié)論:

①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);

②曲線C上任意一點到原點的距離都不超過;

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號是

A. B. C. ①②D. ①②③

查看答案和解析>>

同步練習冊答案