A. | $\frac{1}{{2}^{10}}$ | B. | $\frac{1}{{2}^{15}}$ | C. | 2${\;}^{\frac{31}{16}}$ | D. | 2${\;}^{\frac{47}{16}}$ |
分析 f′(x)=maxm-1+b,根據(jù)題意可得b=0,f′(1)=ma+b=2,f(1)=a+b=1,可得f(x)=x2.可得$\frac{{a}_{n}}{{a}_{n-1}}$=f($\frac{{a}_{{n}_{+1}}}{{a}_{n}}$)=$(\frac{{a}_{n+1}}{{a}_{n}})^{2}$(n>1),an>0.即可得出.
解答 解:f′(x)=maxm-1+b,
∵函數(shù)f(x)=axm+bx(a、b、m∈R,a≠0)的圖象關(guān)于y軸對(duì)稱,在點(diǎn)x=1處的切線方程為y=2x-1,
∴b=0,f′(1)=ma+b=2,f(1)=a+b=1,
解得b=0,a=1,m=2.
∴f(x)=x2.
∴a1=m=2,a2=2m=4,
且$\frac{{a}_{n}}{{a}_{n-1}}$=f($\frac{{a}_{{n}_{+1}}}{{a}_{n}}$)=$(\frac{{a}_{n+1}}{{a}_{n}})^{2}$(n>1),an>0.
∴$\frac{{a}_{2}}{{a}_{1}}=(\frac{{a}_{3}}{{a}_{2}})^{2}$,解得a3=4$\sqrt{2}$,同理可得:a4=4$\root{4}{8}$,a5=4$\root{8}{128}$,a6=4$\root{16}{32768}$=${2}^{\frac{47}{16}}$.
故選:D.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、利用導(dǎo)數(shù)函數(shù)切線方程、方程的解法、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥α,a∥β,則α∥β | B. | 若a∥α,b⊆α,則a∥b | C. | 若a∥α,a⊆β,則α∥β | D. | 若a⊥α,a⊆β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 1 | C. | -$\frac{4}{3}$ | D. | -$\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -$\frac{3}{2}$ | C. | -2 | D. | -$\frac{4}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com