4.a(chǎn),b為直線,α,β為平面,下列正確的是( 。
A.若a∥α,a∥β,則α∥βB.若a∥α,b⊆α,則a∥bC.若a∥α,a⊆β,則α∥βD.若a⊥α,a⊆β,則α⊥β

分析 在A中,α與β相交或平行;在B中,a與b平行或異面;在C中,α與β相交或平行;在D中,由面面垂直的判定定理得α⊥β.

解答 解:由a,b為直線,α,β為平面,知:
在A中,若a∥α,a∥β,則α與β相交或平行,故A錯誤;
在B中,若a∥α,b⊆α,則a與b平行或異面,故B錯誤;
在C中,若a∥α,a⊆β,則α與β相交或平行,故C錯誤;
在D中,若a⊥α,a⊆β,則由面面垂直的判定定理得α⊥β,故D正確.
故選:D.

點評 本題考查命題真假的判斷,考查空間中線線、線面、面面間的關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.三個數(shù)20.3,20.8,log20.3的大小關(guān)系為(  )
A.${2^{0.3}}<{log_2}0.3<{2^{0.8}}$B.20.3<20.8<log20.3
C.${log_2}0.3<{2^{0.8}}<{2^{0.3}}$D.${log_2}0.3<{2^{0.3}}<{2^{0.8}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若點O和點F分別為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心和左焦點,點P為橢圓上任意一點,則$\overrightarrow{OP}$•$\overrightarrow{FP}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若曲線f(x)=cosx與曲線g(x)=x2+bx+1在交點(0,1)處有公切線,則b=(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,F(xiàn)1和F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點,A和B是以O(shè)為圓心,以|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線m斜率為k,經(jīng)過點(-2,4),將直線向右平移10個單位,再向下平移2個單位,得到直線n,若直線n不經(jīng)過第四象限,則直線l的斜率k的取值范圍是$[0,\frac{1}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,若an=-3Sn+4,bn=-log2an+1
(1)求數(shù)列{an}的通項公式與數(shù)列{bn}的通項公式;
(2)令cn=$\frac{_{n}}{{2}^{n+1}}$,其中n∈N*,記數(shù)列{cn}的前n項和為Tn,求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}$ax2+2x-lnx.
(1)當a=0時,求函數(shù)的極值;
(2)若f(x)在[$\frac{1}{3}$,2]上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=axm+bx(a、b、m∈R,a≠0)的圖象關(guān)于y軸對稱,在點x=1處的切線方程為y=2x-1,數(shù)列{an}各項均為正值,且a1=m,a2=2m,且$\frac{{a}_{n}}{{a}_{n-1}}$=f($\frac{{a}_{{n}_{+1}}}{{a}_{n}}$)(n>1),則a6=( 。
A.$\frac{1}{{2}^{10}}$B.$\frac{1}{{2}^{15}}$C.2${\;}^{\frac{31}{16}}$D.2${\;}^{\frac{47}{16}}$

查看答案和解析>>

同步練習(xí)冊答案