【題目】我國著名數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”( 注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,則的概率是( )
A.B.C.D.
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓經(jīng)過定點,且與定直線相切.
(1)求動圓圓心的軌跡方程;
(2)已知點,過點作直線與交于,兩點,過點作軸的垂線分別與直線,交于點,(為原點),求證:為線段中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計該校擔任班主任的教師月平均通話時長的中位數(shù);
(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.
(1)求橢圓的方程;
(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的中心在原點,其左焦點與拋物線的焦點重合,過的直線與橢圓交于、兩點,與拋物線交于、兩點.當直線與軸垂直時,.
(1)求橢圓的方程;
(2)求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設復數(shù)β=x+yi(x,y∈R)與復平面上點P(x,y)對應.
(1)若β是關于t的一元二次方程t2﹣2t+m=0(m∈R)的一個虛根,且|β|=2,求實數(shù)m的值;
(2)設復數(shù)β滿足條件|β+3|+(﹣1)n|β﹣3|=3a+(﹣1)na(其中n∈N*、常數(shù)),當n為奇數(shù)時,動點P(x、y)的軌跡為C1.當n為偶數(shù)時,動點P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點A,使點A與點B(x0,0)(x0>0)的最小距離不小于,求實數(shù)x0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)滿足,且為偶函數(shù),若在內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com