5.在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,若p:a2+b2<c2,q:△ABC是鈍角三角形,則p是q的( 。l件.
A.充分非必要B.必要非充分
C.充要條件D.既不充分也不必要

分析 在△ABC中,由“a2+b2<c2”,利用余弦定理可得:C為鈍角,因此“△ABC為鈍角三角形”,反之不成立.

解答 解:在△ABC中,“a2+b2<c2
?cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$<0⇒C為鈍角⇒“△ABC為鈍角三角形”,
反之不一定成立,可能是A或B為鈍角,
∴△ABC的三內(nèi)角A,B,C的對(duì)邊分別是a,b,c,
則“a2+b2<c2”是“△ABC為鈍角三角形”的充分不必要條件,
即p是q的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題考查了余弦定理、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a2+b2+ab=c2
(1)求角C的大小;
(2)若c=2acosB,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)f(x)=sin(ωx+φ)(ω>0且|φ|<$\frac{π}{2}$)在區(qū)間($\frac{π}{6}$,$\frac{2π}{3}$)上是單調(diào)減函數(shù),且函數(shù)值從1減小到-1,則f($\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cosx,sinx)$,$\overrightarrow c=(sinx+2sinα,cosx+2cosα)$,其中0<α<x<π
(1)若$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,且$\overrightarrow a⊥\overrightarrow c$,求tan2α的值;
(2)若$α=\frac{π}{4}$,求函數(shù)$f(x)=\overrightarrow b•\overrightarrow c$的最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)點(diǎn)P,Q分別是曲線f(x)=x2-lnx和直線x-y-2=0上的動(dòng)點(diǎn),則P,Q兩點(diǎn)間的距離的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)滿足:對(duì)任意的x1、x2(x1≠x2),均有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,則( 。
A.$f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$B.f(60.5)<f(0.76)<f(log0.76)
C.$f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$D.$f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)定點(diǎn)F1(2,0),F(xiàn)2(-2,0),平面內(nèi)一動(dòng)點(diǎn)P滿足條件$|{P{F_1}}|+|{P{F_2}}|=4a+\frac{1}{a}(a>0)$,則點(diǎn)P的軌跡是( 。
A.橢圓B.雙曲線C.線段D.橢圓或線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知銳角在△ABC中,b=10,c=5$\sqrt{6}$,C=60°求
(1)外接圓半徑;         
(2)求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知點(diǎn)是F雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn),過(guò)左焦點(diǎn)F作直線與圓心為原點(diǎn)、半徑為實(shí)半軸長(zhǎng)的一半的圓相切于點(diǎn)E,直線FE交雙曲線的右支于點(diǎn)P,點(diǎn)B是直線FE外任意一點(diǎn),且2$\overrightarrow{BE}$=$\overrightarrow{BF}$+$\overrightarrow{BP}$,則雙曲線的離心率為$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案