4.已知函數(shù)f(x)=eax+ebx(a,b∈R),其中e是自然數(shù)的底數(shù).若f(x)是R上的偶函數(shù),則a+b的值為0.

分析 根據(jù)偶函數(shù)的定義,可得f(-x)=f(x),進(jìn)而可得a,b的關(guān)系,得到答案.

解答 解:∵函數(shù)f(x)=eax+ebx(a,b∈R)是R上的偶函數(shù),
∴f(-x)=f(x),
即e-ax+e-bx=eax+ebx
故-a=b,
即a+b=0;
故答案為:0

點評 本題考查的知識點是函數(shù)奇偶性的性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx-1,x≤0}\\{{2}^{-x}-1,x>0}\end{array}\right.$,(k<0),當(dāng)方程f[f(x)]=-$\frac{1}{2}$恰有三個實數(shù)根時,實數(shù)k的取值范圍為(  )
A.(-$\frac{1}{2}$,0)B.[-$\frac{1}{2}$,0)C.(-∞,-$\frac{1}{2}$]D.(-∞,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b(x<1)}\\{{3}^{x}(x≥1)}\end{array}\right.$,若$f(f(\frac{1}{2}))=9$,則實數(shù)b的值為(  )
A.$-\frac{3}{2}$B.$-\frac{9}{8}$C.$-\frac{3}{4}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知四邊形BCD和BCEG均為直角梯形,AD∥EG、CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=2AD,CE=2BG.求證:
(Ⅰ)EC⊥CD;
(Ⅱ)求證:AG∥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一個正方體截取兩個全等的小正三棱錐后得到的幾何體的主視圖和俯視圖如圖,則該幾何體的左視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=x(\frac{1}{{{2^x}-1}}+\frac{1}{2})$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求證:當(dāng)x≠0時,f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{3x}{{\sqrt{-1-x}}}$,其定義域為A.
(1)求A;
(2)求f(-2)的值;
(3)判斷0與A的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={1,3,$\sqrt{3}$},B={1,m},A∪B=A,則m=( 。
A.0或$\sqrt{3}$B.0或3C.3或$\sqrt{3}$D.1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,E是PA的中點,且PA=PB=AB=2,BC=$\sqrt{2}$.
(1)求證:PC∥平面EBD;
(2)求三棱錐A-PBD的體積.

查看答案和解析>>

同步練習(xí)冊答案