8.若復(fù)數(shù)z=i(3-2i)(i是虛數(shù)單位),則$\overline{z}$=(  )
A.3-2iB.2+3 iC.3+2iD.2-3i

分析 把給出的等式變形,然后利用復(fù)數(shù)的除法運(yùn)算求解復(fù)數(shù)z,再根據(jù)共軛復(fù)數(shù)的定義即可求出

解答 解:復(fù)數(shù)z=i(3-2i)=2+3i,則$\overline{z}$=2-3i,
故選:D

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,已知拋物線x2=2py(p>0),過點(diǎn)A(0,-1)作直線l與拋物線相交于P、Q兩點(diǎn),點(diǎn)B的坐標(biāo)為(0,1),連接BP、BQ,設(shè)QB、BP與x軸分別相交于M、N兩點(diǎn),如果QB斜率與PB的斜率之積為-3,則∠MBN的余弦值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若α=-60°,則α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow a=(2,t)$,$\overrightarrow b=(1,2)$,若t=t1時(shí),$\overrightarrow a∥\overrightarrow b$;若t=t2時(shí),$\overrightarrow a⊥\overrightarrow b$,則t1,t2的值分別為( 。
A.-4,-1B.-4,1C.4,-1D.4,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn+1 (n∈N*),等差數(shù)列{bn}中,bn>0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比數(shù)列.則數(shù)列{an•bn}的前n項(xiàng)和Tn為(  )
A.3n-1B.2n+1C.n•3nD.-2n•3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若tan(π-a)=-$\frac{1}{2}$,則$\frac{sinα+7cosα}{cosα-2sinαtanα}$的值為( 。
A.-$\frac{13}{3}$B.-15C.$\frac{13}{3}$D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,a=3,b=5,sinA=$\frac{1}{3}$,則sinB=( 。
A.$\frac{1}{5}$B.$\frac{5}{9}$C.$\frac{\sqrt{5}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=x2-2lnx的單調(diào)增區(qū)間為(  )
A.(-∞,-1)∪(0,1)B.(1,+∞)C.(-1,0)∪(1,+∞)D.(0,1)

查看答案和解析>>

同步練習(xí)冊答案