【題目】將邊長(zhǎng)為5的菱形ABCD沿對(duì)角線AC折起,頂點(diǎn)B移動(dòng)至處,在以點(diǎn)B',A,C,為頂點(diǎn)的四面體AB'CD中,棱AC、B'D的中點(diǎn)分別為E、F,若AC=6,且四面體AB'CD的外接球球心落在四面體內(nèi)部,則線段EF長(zhǎng)度的取值范圍為( )
A.B.C.D.
【答案】B
【解析】
由題意畫(huà)出圖形,可證AC⊥平面B′ED,得到球心O位于平面B′ED與平面ACF的交線上,即直線EF上,由勾股定理結(jié)合OA=OB′,OE<EF,EF<EB′=4可得線段EF長(zhǎng)度的取值范圍.
如圖所示:
由已知可得,AC⊥B′E,且AC⊥DE,
∴AC⊥平面B′ED,
∵E是AC的中點(diǎn),
∴到點(diǎn)A、C的距離相等的點(diǎn)位于平面ACF內(nèi),
同理可知,到點(diǎn)B′、D的距離相等的點(diǎn)位于平面ACF內(nèi),
∵球心O到點(diǎn)A,B′,C,D的距離相等,
∴球心O位于平面B′ED與平面ACF的交線上,即直線EF上.
∴球心O落在線段EF上(不含端點(diǎn)E、F),
顯然EF⊥B′D,由題意EA=3,EB′=4,則OA2=OE2+9,
且OB′2=OF2+FB′2=OF2+EB′2﹣EF2=(EF﹣OE)2+16﹣EF2=OE2+16﹣2EFOE.
∵OA=OB′,
∴OE2+9=OE2+16﹣2EFOE,則,
顯然OE<EF,
∴EF,即EF.
又EF<EB′=4,∴EF<4.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知項(xiàng)數(shù)為的數(shù)列滿足條件:①;②;若數(shù)列滿足,則稱為數(shù)列的“關(guān)聯(lián)數(shù)列.
(1)數(shù)列1,5,9,13,17是否存在“關(guān)聯(lián)數(shù)列”?若存在,寫(xiě)出其“關(guān)聯(lián)數(shù)列”,若不存在,請(qǐng)說(shuō)明理由;
(2)若數(shù)列存在“關(guān)聯(lián)數(shù)列”,證明:;
(3)已知數(shù)列存在“關(guān)聯(lián)數(shù)列”,且,,求數(shù)列項(xiàng)數(shù)m的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線平面,垂足為,正四面體的棱長(zhǎng)為2,,分別是直線和平面上的動(dòng)點(diǎn),且,則下列判斷:①點(diǎn)到棱中點(diǎn)的距離的最大值為;②正四面體在平面上的射影面積的最大值為.其中正確的說(shuō)法是( ).
A.①②都正確B.①②都錯(cuò)誤C.①正確,②錯(cuò)誤D.①錯(cuò)誤,②正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為正整數(shù),各項(xiàng)均為正整數(shù)的數(shù)列滿足:,記數(shù)列的前項(xiàng)和為.
(1)若,求的值;
(2)若,求的值;
(3)若為奇數(shù),求證:“”的充要條件是“為奇數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是軸上的動(dòng)點(diǎn)(異于原點(diǎn)),點(diǎn)在圓上,且.設(shè)線段的中點(diǎn)為,當(dāng)點(diǎn)移動(dòng)時(shí),記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)當(dāng)直線與圓相切于點(diǎn),且點(diǎn)在第一象限.
(ⅰ)求直線的斜率;
(ⅱ)直線平行,交曲線于不同的兩點(diǎn)、.線段的中點(diǎn)為,直線與曲線交于兩點(diǎn)、,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為提升中學(xué)生的數(shù)學(xué)素養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,舉辦了一次“數(shù)學(xué)文化知識(shí)大賽”,分預(yù)賽和復(fù)賽兩個(gè)環(huán)節(jié).已知共有8000名學(xué)生參加了預(yù)賽,現(xiàn)從參加預(yù)賽的全體學(xué)生中隨機(jī)地抽取100人的預(yù)賽成績(jī)作為樣本,得到如下頻率分布直方圖.
(1)規(guī)定預(yù)賽成績(jī)不低于80分為優(yōu)良,若從上述樣本中預(yù)賽成績(jī)不低于60分的學(xué)生中隨機(jī)地抽取2人,求恰有1人預(yù)賽成績(jī)優(yōu)良的概率;
(2)由頻率分布直方圖可認(rèn)為該市全體參加預(yù)賽學(xué)生的預(yù)賽成績(jī)Z服從正態(tài)分布N(μ,σ2),其中μ可近似為樣本中的100名學(xué)生預(yù)賽成績(jī)的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替),且σ2=362.利用該正態(tài)分布,估計(jì)全市參加預(yù)賽的全體學(xué)生中預(yù)賽成績(jī)不低于91分的人數(shù);
(3)預(yù)賽成績(jī)不低于91分的學(xué)生將參加復(fù)賽,復(fù)賽規(guī)則如下:①每人的復(fù)賽初始分均為100分;②參賽學(xué)生可在開(kāi)始答題前自行決定答題數(shù)量n,每一題都需要“花”掉(即減去)一定分?jǐn)?shù)來(lái)獲取答題資格,規(guī)定答第k題時(shí)“花”掉的分?jǐn)?shù)為0.1k(k∈(1,2n));③每答對(duì)一題加1.5分,答錯(cuò)既不加分也不減分;④答完n題后參賽學(xué)生的最終分?jǐn)?shù)即為復(fù)賽成績(jī).已知學(xué)生甲答對(duì)每道題的概率均為0.7,且每題答對(duì)與否都相互獨(dú)立.若學(xué)生甲期望獲得最佳的復(fù)賽成績(jī),則他的答題數(shù)量n應(yīng)為多少?
(參考數(shù)據(jù):;若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)≈0.6827,P(μ﹣2σ<Z<μ+2σ)≈0.9545,P(μ﹣3σ<Z<μ+3σ)≈0.9973.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).設(shè)直線與的交點(diǎn)為,當(dāng)變化時(shí)的點(diǎn)的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為且,點(diǎn)是射線與曲線的交點(diǎn),求點(diǎn)的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面α∩平面β=l,A,C是α內(nèi)不同的兩點(diǎn),B,D是β內(nèi)不同的兩點(diǎn),且A,B,C,D直線l,M,N分別是線段AB,CD的中點(diǎn).下列判斷正確的是( 。
A.若ABCD,則MNl
B.若M,N重合,則ACl
C.若AB與CD相交,且ACl,則BD可以與l相交
D.若AB與CD是異面直線,則MN不可能與l平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面, ,分別是的中點(diǎn).
(1)證明:平面平面;
(2)已知點(diǎn)在棱上且,求直線與平面所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com