【題目】定義滿(mǎn)足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”的集合A為“閉集”.試問(wèn)數(shù)集N,Z,Q,R是否分別為“閉集”?若是,請(qǐng)說(shuō)明理由;若不是,請(qǐng)舉反例說(shuō)明.
【答案】數(shù)集N,Z不是“閉集”,數(shù)集Q,R是“閉集”.舉反例見(jiàn)解析
【解析】試題分析:根據(jù)給出的“閉集”的定義,驗(yàn)證給出的集合是否滿(mǎn)足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”即可得到結(jié)論。
試題解析:
(1)數(shù)集N,Z不是“閉集”,
例如,3∈N,2∈N,而=1.5N;
3∈Z,-2∈Z,而=-1.5Z,故N,Z不是閉集.
(2)數(shù)集Q,R是“閉集”.
由于兩個(gè)有理數(shù)a與b的和,差,積,商,
即a±b,ab, (b≠0)仍是有理數(shù),
故Q是閉集.
同理R也是閉集.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分.
有時(shí)可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).
(1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·重慶高二檢測(cè))如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn).
(1)證明:平面BDC1⊥平面BDC.
(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某單位用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(1)寫(xiě)出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=購(gòu)地總費(fèi)用/建筑總面積)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在上的函數(shù),若存在距離為的兩條直線(xiàn)和,使得對(duì)任意都有恒成立,則稱(chēng)函數(shù)有一個(gè)寬度為的通道,給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度可以為1的函數(shù)的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過(guò)P(3,4)點(diǎn),求a的值;
(2)比較大小,并寫(xiě)出比較過(guò)程;
(3)若,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),若存在,求出的取值范圍;若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com