【題目】已知函數(shù)(是自然對數(shù)的底數(shù)),.
(1)若,求的極值;
(2)對任意都有成立,求實數(shù)的取值范圍.
(3)對任意證明:;
【答案】(1)極小值1,無極大值;(2)(3)見解析
【解析】
(1)設,對其求導令,從而得出其導函數(shù)取得正負的區(qū)間,得出函數(shù)的單調(diào)性,從而求得的極值;
(2)令,求導,令解得討論實數(shù)的范圍和分別驗證不等式是否恒成立,可得出的取值范圍.
(3)令,求導得時,單調(diào)遞增;;有,代換可得證.
(1)設,令,
所以當,,當,,
所以當時,單調(diào)遞減,當時,單調(diào)遞增,
從而當時,取得的極小值,無極大值;
(2),,令解得
(i)當時,,所以對所有,;在上是增函數(shù).
所以有,即當時,對于所有,都有.
(ii)當時,對于,所以在上是減函數(shù),
從而對于有,即,所以當時,不是對所有的都有成立.
綜上,的取值范圍是;
(3)證明:令,,當,,
所以當時,單調(diào)遞增;;
所以,,
,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】給圖中A,B,C,D,E,F六個區(qū)域進行染色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中是實數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若設,且有兩個極值點,(),求取值范圍.(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)分別估計中青年和中老年對新高考了解的概率;
(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?
了解新高考 | 不了解新高考 | 總計 | |
中青年 | |||
中老年 | |||
總計 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(3)若從年齡在的被調(diào)查者中隨機選取3人進行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點為圓上的動點,點在軸上的投影為,動點滿足,動點的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)設的左頂點為,若直線與曲線交于兩點,(,不是左右頂點),且滿足,求證:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果一個三位數(shù)abc同時滿足且,則稱該三位數(shù)為“凹數(shù)”,那么所有不同的三位“凹數(shù)”的個數(shù)是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構隨機調(diào)查了,兩個企業(yè)各100名員工,得到了企業(yè)員工收入的頻數(shù)分布表以及企業(yè)員工收入的統(tǒng)計圖如下:
企業(yè):
工資 | 人數(shù) |
5 | |
10 | |
20 | |
42 | |
18 | |
3 | |
1 | |
1 |
企業(yè):
(1)若將頻率視為概率,現(xiàn)從企業(yè)中隨機抽取一名員工,求該員工收入不低于5000元的概率;
(2)(i)若從企業(yè)收入在員工中,按分層抽樣的方式抽取7人,而后在此7人中隨機抽取2人,求這2人收入在的人數(shù)的分布列.
(ii)若你是一名即將就業(yè)的大學生,根據(jù)上述調(diào)查結(jié)果,并結(jié)合統(tǒng)計學相關知識,你會選擇去哪個企業(yè)就業(yè),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com