直角三角形周長為l,求面積的最大值.
考點:基本不等式
專題:計算題,不等式的解法及應用
分析:設直角三角形的三邊長分別為:a,b,c(c為斜邊),則a2+b2=c2,且l=a+b+c,消去c,運用基本不等式即可得到ab的最大值,進而得到面積的最大值.
解答: 解:設直角三角形的三邊長分別為:a,b,c(c為斜邊),
則a2+b2=c2,且l=a+b+c,
則l=a+b+
a2+b2
≥2
ab
+
2ab

即有ab≤(
l
2+
2
2,
則面積S=
1
2
ab
1
2
×
l2
(2+
2
)2
=
3-2
2
4
l2,
當且僅當a=b=
2-
2
2
l,面積取最大值
3-2
2
4
l2
點評:本題考查基本不等式的運用:求最值,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

iPhone 4S是蘋果公司推出的一款觸摸屏智能手機,屬于蘋果智能手機產(chǎn)品的經(jīng)典版,至今還深受人們的喜愛.某市場分析部門對當?shù)厥袌錾系膇Phone 4S進行長期追蹤調(diào)研發(fā)現(xiàn):廠家每年調(diào)價一次,iPhone 4S的價格沒過一年下調(diào)
1
10
,現(xiàn)2014年市場上iPhone 4S的售價為2348元.
(1)請根據(jù)以上調(diào)研發(fā)現(xiàn)的規(guī)律,給出iPhone 4S在2014年之后的第n(n∈N*)年時,售價y(單位:元)關于n的函數(shù);
(2)根據(jù)公司規(guī)定,當下調(diào)后價格低于2000元時該產(chǎn)品退出市場,請你預測iPhone 4S將在哪一年退出市場.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設兩直線l1:x+y
1-cosθ
+b=0,l2:xsinθ+y
1+cosθ
-a=0,θ∈(π,
3
2
π),則直線l1和l2的位置關系是(  )
A、平行B、平行或重合
C、垂直D、相交但不一定垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={m|(m-11)(m-16)≤0,m∈N},若(x3-
1
x2
n(n∈M)的二項展開式中存在常數(shù)項,則n等于( 。
A、16B、15C、14D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,橢圓C:
 x2   
b2
+
y2    
a2
=1(a>b>0)
的焦點為F1(0,c),F(xiàn)2(0,-c)(c>0),拋物線x2=2py(p>0)的焦點與F1重合,過F2的直線l與拋物線P相切,切點在第一象限,且與橢圓C相交于A,B兩點,且
F2B
AF2

(1)求證:切線l的斜率為定值;
(2)若△OEF2的面積為1,E為直線與曲線的切點,求拋物線C2的方程;
(3)當λ∈[2,4]時,求橢圓的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在定義域內(nèi)是減函數(shù)的是(  )
A、f(x)=-
1
x
B、f(x)=
x
C、f(x)=2-x
D、f(x)=tanx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點A(10,0),直線x=t(0<t<10)與函數(shù)y=e2x+1的圖象交于點P,與x軸交于點H,記△APH的面積為f(t).
(Ⅰ)求函數(shù)f(t)的解析式;
(Ⅱ)求函數(shù)f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應數(shù)軸上的點M,如圖1;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖2;再將這個圓放在平面直角坐標系中,使其圓心在y軸上,點A的坐標為(0,1),如圖3.圖3中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.

下列說法中正確命題的序號是
 
.(填出所有正確命題的序號)
f(
1
4
)=1
;②f(x)在定義域上單調(diào)函數(shù);③f(x)是奇函數(shù);④f(x)的圖象關于點(
1
2
,0)
對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是正項等比數(shù)列,且滿足a3=8,a5=32,數(shù)列{bn}滿足b2=-1,b4=-9,且{an+bn}為等差數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式.
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案