在周長(zhǎng)為定值的DDEC中,已知,動(dòng)點(diǎn)C的運(yùn)動(dòng)軌跡為曲線G,且當(dāng)動(dòng)點(diǎn)C運(yùn)動(dòng)時(shí),有最小值
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標(biāo)系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點(diǎn),求|AB|的取值范圍.

(1);(2)

解析試題分析:(1)由已知得是常數(shù),設(shè),可以判斷動(dòng)點(diǎn)的軌跡是橢圓,且,在中,利用余弦定理結(jié)合橢圓定義列方程得,利用基本不等式求的最大值,從而得的最小值,列方程求,從而橢圓方程可求;(2)因?yàn)橹本和圓、橢圓相切,故設(shè)直線方程,分別與橢圓、圓的方程聯(lián)立,利用,得的等式,并利用韋達(dá)定理的關(guān)系式和,分別求出切點(diǎn)的橫坐標(biāo),利用兩點(diǎn)弦長(zhǎng)公式
,并結(jié)合的等式,得關(guān)于自變量的函數(shù),再求其值域得的范圍.
試題解析:(1)設(shè) |CD|+|CE|=2a  (a>4)為定值,所以C點(diǎn)的軌跡是以D、E為焦點(diǎn)的橢圓,所以焦距2c=|DE|=8.,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/0/zbazi4.png" style="vertical-align:middle;" />,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/52/4/3scmc.png" style="vertical-align:middle;" />
,所以,由題意得 . 所以C點(diǎn)軌跡G 的方程為  ;
(2)設(shè)分別為直線與橢圓和圓的切點(diǎn), 直線AB的方程為: ,因?yàn)锳既在橢圓上,又在直線AB上,從而有, 消去得:,由于直線與橢圓相切,故 ,從而可得: ①      ②, 由消去得:,由于直線與圓相切,得:③,    ④ ,由②④得: ;,①③得:  
,;,從而.

考點(diǎn):1、橢圓的定義及其標(biāo)準(zhǔn)方程;2、基本不等式;3、兩點(diǎn)之間的距離公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線上有一點(diǎn),到焦點(diǎn)的距離為.
(Ⅰ)求的值.
(Ⅱ)如圖,設(shè)直線與拋物線交于兩點(diǎn),且,過(guò)弦的中點(diǎn)作垂直于軸的直線與拋物線交于點(diǎn),連接.試判斷的面積是否為定值?若是,求出定值;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

矩形的中心在坐標(biāo)原點(diǎn),邊軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線,,的交點(diǎn)依次為.

(1)以為長(zhǎng)軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請(qǐng)以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段等分點(diǎn)從左向右依次為,線段等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫(xiě)出結(jié)果即可,此問(wèn)不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,斜率為的直線過(guò)拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, M為拋物線弧AB上的動(dòng)點(diǎn).

(Ⅰ).若,求拋物線的方程;
(Ⅱ).求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn)
(I)求直線交點(diǎn)的軌跡的方程;
(II)已知,設(shè)直線:與(I)中的軌跡交于、兩點(diǎn),直線、 的傾斜角分別為,求證:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,過(guò)點(diǎn)作圓的切線交橢圓于A,B兩點(diǎn)。
(1)求橢圓的焦點(diǎn)坐標(biāo)和離心率;
(2)求的取值范圍;
(3)將表示為的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)把的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求交點(diǎn)的極坐標(biāo)().

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),,為動(dòng)點(diǎn),且直線與直線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)的直線與曲線相交于不同的兩點(diǎn),.若點(diǎn)軸上,且,求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案