矩形的中心在坐標(biāo)原點(diǎn),邊與軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線與,與,與的交點(diǎn)依次為.
(1)以為長軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段的(等分點(diǎn)從左向右依次為,線段的等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
(1);(2)詳見解析;(3)
解析試題分析:根據(jù)長軸長,短軸長,可求出橢圓的方程;根據(jù)點(diǎn)的坐標(biāo)可寫出直線的方程,同理也可寫出直線的方程,再求出它們的交點(diǎn)的坐標(biāo),驗(yàn)證在橢圓上即可得證;類比(2)的結(jié)論,即可得到直線與直線的交點(diǎn)一定在橢圓Q上.
試題解析:
根據(jù)題意可知,橢圓的焦點(diǎn)在軸上,可設(shè)其標(biāo)準(zhǔn)方程為,
因?yàn)殚L軸長,短軸長,所以,
所以所求的橢圓的標(biāo)準(zhǔn)方程為:.
由題意知,
可得直線的方程為,直線的方程為,
聯(lián)立可解得其交點(diǎn),將的坐標(biāo)代入橢圓方程成立,即點(diǎn)在橢圓上得證.
另法:設(shè)直線、交點(diǎn),
由三點(diǎn)共線得: ①
由三點(diǎn)共線得: ②
①②相乘,整理可得,即
所以L在橢圓上.
(3)類比(2)的結(jié)論,即可得到直線與直線的交點(diǎn)一定在橢圓Q上.
考點(diǎn):本題考查了直線的方程,橢圓的方程的求解方法,以及直線與圓錐曲線的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的長軸為AB,過點(diǎn)B的直線與
軸垂直,橢圓的離心率,F為橢圓的左焦點(diǎn),且
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點(diǎn), 軸,H為垂足,延長HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長交直線于點(diǎn),為的中點(diǎn),判定直線與以為直徑的圓O位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于、兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,斜率為的直線過拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, M為拋物線弧AB上的動點(diǎn).
(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點(diǎn)F(2,0)和定直線,動圓P過定點(diǎn)F與定直線相切,記動圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點(diǎn),且線段AB是此圓的直徑時(shí),求直線AB的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點(diǎn)為直線上的點(diǎn),求直線的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線上移動時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在周長為定值的DDEC中,已知,動點(diǎn)C的運(yùn)動軌跡為曲線G,且當(dāng)動點(diǎn)C運(yùn)動時(shí),有最小值.
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標(biāo)系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點(diǎn),求|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是(-5,0),(5,0),且AC,BC所在直
線的斜率之積等于m(m≠0),求頂點(diǎn)C的軌跡.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com