1.在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題.甲能正確完成其中的4題,乙能正確完成每道題的概率為$\frac{2}{3}$,且每道題完成與否互不影響,規(guī)定至少正確完成2道題便可過關(guān).
(1)記所抽取的3道題中,甲答對的題數(shù)為X,求X的分布列和期望;
(2)記乙能答對的題數(shù)為Y,求Y的分布列、期望和方差.

分析 (1)由題意得X的可能取值為1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和期望.
(2)由題意Y的可能取值為0,1,2,3,且Y~B(3,$\frac{2}{3}$),由此能求出Y的分布列、期望和方差.

解答 解:(1)主考官要求應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題.
甲能正確完成其中的4題,所抽取的3道題中,甲答對的題數(shù)為X,
由題意得X的可能取值為1,2,3,
$P(X=1)=\frac{C_4^1C_2^2}{C_6^3}=\frac{1}{5}$,
$P(X=2)=\frac{C_4^2C_2^1}{C_6^3}=\frac{3}{10}$,
$P(X=3)=\frac{C_4^3C_2^0}{C_6^3}=\frac{1}{5}$,
∴X的分布列為:

X123
P0.20.30.2
E(X)=0.2+0.6+0.6=1.4.…(6分)
(2)主考官要求應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題,
乙能正確完成每道題的概率為$\frac{2}{3}$,且每道題完成與否互不影響,
由題意Y的可能取值為0,1,2,3,且Y~B(3,$\frac{2}{3}$),
P(Y=0)=$(\frac{1}{3})^{3}$=$\frac{1}{27}$,
P(Y=1)=${C}_{3}^{1}(\frac{2}{3})(\frac{1}{3})^{2}$=$\frac{6}{27}$,
P(Y=2)=${C}_{3}^{2}(\frac{2}{3})^{2}(\frac{1}{3})$=$\frac{12}{27}$,
P(Y=3)=${C}_{3}^{3}(\frac{2}{3})^{3}$=$\frac{8}{27}$,
∴Y的分布列為:
Y0123
P$\frac{1}{27}$$\frac{6}{27}$$\frac{12}{27}$$\frac{8}{27}$
E(Y)=$0×\frac{1}{27}+1×\frac{6}{27}+2×\frac{12}{27}+3×\frac{8}{27}$=2,
D(Y)=(0-2)2×$\frac{1}{27}$+(1-2)2×$\frac{6}{27}$+(2-2)2×$\frac{12}{27}$+(3-2)2×$\frac{8}{27}$=$\frac{2}{3}$.…(12分)

點(diǎn)評 本題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望和方差的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.證明:$\frac{1}{2×3}+\frac{1}{3×5}+…+\frac{1}{(n+1)(2n+1)}<\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.經(jīng)過拋物線y=ax2(a>0)的焦點(diǎn)F,且傾斜角為$\frac{π}{6}$的直線與拋物線在第一象限的交點(diǎn)為A,過A作x軸的垂線,垂足為B,若△ABF的面積為$\frac{3\sqrt{3}}{4}$,則實(shí)數(shù)a的值為( 。
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N+
(1)求a2,a3,a4,a5;
(2)歸納猜想出通項(xiàng)公式an,并且用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,過左焦點(diǎn)F的直線與橢圓交于A,B兩點(diǎn),若線段AB的中點(diǎn)為M(-$\frac{2}{3}$,$\frac{1}{3}$)
(1)求橢圓的方程;
(2)過右焦點(diǎn)的直線l與圓x2+y2=2相交于C、D,與橢圓T相交于E、G,且|CD|=$\sqrt{5}$,求|EG|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b∈R+,m,n∈N*
(Ⅰ)求證:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求證:$\frac{a+b}{2}$•$\frac{{{a^2}+{b^2}}}{2}$•$\frac{{{a^3}+{b^3}}}{2}$≤$\frac{{{a^6}+{b^6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.據(jù)統(tǒng)計(jì),在某銀行的一個(gè)營業(yè)窗口等候的人數(shù)及其相應(yīng)的概率如表:
排隊(duì)人數(shù)012345人及5人以上
概率0.050.140.350.30.10.06
設(shè)排隊(duì)人數(shù)為 0,1,2,3,4,5及5以上分別對應(yīng)事件A,B,C,D,E,F(xiàn),試求:
(Ⅰ)至多有1人排隊(duì)等候的概率;
(Ⅱ)至少有4人排隊(duì)等候的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)口袋中裝有大小和形狀完全相同的2個(gè)紅球和2個(gè)白球,從這個(gè)口袋中任取2個(gè)球,則取得的兩個(gè)球中恰有一個(gè)紅球的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.存在正數(shù)m,使得方程$\sqrt{3}$sinx-cosx=m的正根從小到大排成一個(gè)等差數(shù)列.若點(diǎn)A(1,m)在直線ax+by-2=0(a>0,b>0)上,則$\frac{1}{a}$+$\frac{2}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊答案